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Abstract. Exception specifications can aid in the tasks of writing correct excep-
tion handlers and understanding exceptional control flow, but current exception
specification systems are impractical in a number of ways. In particular, they are
too low-level, too heavyweight, and do not provide adequate support for describ-
ing exception policies.

We have identified the essential properties of a practical exception specification
system and we present a methodology and tool that provides integrated support
for specifying, understanding, and evolving exception policies. The annotations
required of the programmer are lightweight and easier to maintain than those of
current systems; in our studies we observed a 50% to 93% reduction in annota-
tions. By leveraging these annotations, our system provides scalable support for
understanding exception flow and for modifying exception annotations.

1 Introduction

Exceptions can be very useful for separating normal code from error handling code, but
they introduce implicit control flow, complicating the task of understanding, maintain-
ing, and debugging programs. Additionally, testing is not always effective for finding
bugs in exception handing code, and these bugs can be particularly problematic (for
example, a program that crashes without saving the user’s data).

For programmers to write correct exception handlers, they need precise information
about all exceptions that may be raised at a particular program location. Documentation
is inadequate—it is error prone and difficult to maintain. On the other hand, precise
information can be obtained through a whole-program analysis of exception flow (in-
cluding analysis of all libraries used), but this is not a scalable solution, nor is it even
applicable in situations where the whole program is not available. Moreover, relying
on whole program exception analysis would complicate team development; if one pro-
grammer changes exception-related code, the control flow in apparently unrelated parts
of the program may change in surprising ways.

1.1 A motivating example

We now present an example to motivate the need for practical exception specifications,
and to illustrate the way a programmer would use our tool, ExnJava. Consider a module
whose intended abstraction is that it present to its clients a high-level view for managing
user preferences. The module is to hide implementation details of how the preferences
are actually stored; clients should not depend on such details.



Fig. 1. Excerpts of Java code for managing user preferences. The classes are part of the package
util.userPrefs .
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See Figure 1 for the corresponding code, written in Java. The classesUserPrefs ,
PrefKeys andSerializer reside in theutil.userPrefs package, for which the
programmer supplies the following package exception specification:

package util.userPrefs may only throw util.PrefException

This specifies the policy thatPrefException is the only checked exception that can
be thrown from the public methods ofutil.userPrefs . This is to prevent an interface
method from throwing a low-level exception, in which case clients would not be able
to write a meaningful exception handler without knowing the module’s implementation
details.

The classUserPrefs is the interface to the package;PrefKeys andSerializer

are package-private.PrefKeys just passes through toSerializer , which previ-



ously stored preferences in the registry (lines 26 and 31), but now uses a database
(lines 27 and 32). Note that preferences values are stored in the database as soon as
UserPrefs.setValue is called.

Suppose that in the old version of the code, the calls toregistry ’s methods in
lines 26 and 31 did not throw an exception. If the registry did not contain a value for a
particular key, theregistry object simply returned an appropriate default. Similarly,
a failed save to the registry was simply logged by theregistry class.

Now, however,theDB.get (line 27) and theDB.set (line 32) can throw an
exception—aSQLException in this case. Since in Java, uncaught exceptions are
automatically propagated up to the caller, all 6 methods now also throw this
exception:UserPrefs.getValue , UserPrefs.setValue , PrefKeys.getValue ,
PrefKeys.setValue , Serializer.readValue andSerializer.writeValue .

Accordingly, the Java typechecker would require that all of these methods update
their exception declarations. Though only 2 lines of code have been changed, program-
mers must now manually update the exception declarations of 6 methods—a threefold
increase even in this simple example. This factor only increases in larger programs with
more complex control flow. In Section 3, we will explore this problem in more detail,
as well as look at the problems of other exception specification systems.

In contrast, in ExnJava, programmers need not add all of thesethrows declara-
tions;throws annotations are only required on the public interface of a package. Since
only the methods ofPrefKeys are visible outside the package, these are the only meth-
ods that need to have athrows declaration; thethrows declarations are automatically
inferred for the other 4 methods. However, ExnJava will not accept the definition of
UserPrefs as is—its package exception specification does not allowSQLException

to be thrown from public methods. This error prompts the programmer to make a deci-
sion regarding howSQLException should be handled. The programmer realizes that
line 27 inSerializer.readValue should be wrapped in atry-catch block:

catch (SQLException e) {
return DefaultsManager.getDefault(key); }

For the exception originating fromSerializer.writeValue , the correct behav-
ior is that the exception be caught inUserPrefs.getValue and rethrown, so a handler
is added around line 8:

catch (SQLException e) { throw new PrefException(e); }

1.2 Exception specifications

As shown in the example, exception specifications can be a useful tool for reasoning
about exceptions (see, for example, [18, 15, 2, 7]). They serve to document and enforce
a contract between abstraction boundaries, which facilitates modular software devel-
opment, and can also provide information about exception flow in a scalable manner.
In Section 2 we describe the essential properties that we believe a practical exception
specification system must have: it should be lightweight while sufficiently expressive,
and should facilitate creating, understanding, and evolving specifications.



We have provided an integrated methodology for practical use of exception speci-
fications and have designed a tool, described in Section 4 that leverages this. The tool
combines user annotations, program analysis, refactorings, and GUI views that display
analysis results. Our methodology and tool raise the level of abstraction of exception
specifications, making them more expressive, more lightweight, and easier to modify.
As we saw in the example above, this can aid programmers in writing better exception
handlers.

Note that we focus on the problem ofspecifyingvarious properties of exception be-
havior, rather than a proposal for a new exception handling mechanism. Additionally,
though our work is performed in the context of Java, much of our basic design would
be applicable to languages with similar exception handling mechanisms. There are two
key properties of Java’s exception handling mechanism: handlers are bound dynami-
cally (the call stack is searched to find the handler, and cannot in general be statically
determined), and exception propagation is performed automatically (if a method does
not handle an exception, it is automatically propagated to its caller). The exception
handling mechanisms of many popular languages have these properties, such as Ada,
Eiffel, C++, C#, and ML.

The contributions of system are as follows:

– It performs a modular exception analysis and allows developers to easily browse
the exception control flow within an application. This allows developers to easily
answer questions about non-local exception behavior, and shows information about
exceptions that are not provided by the host language.

– It allows developers to express and check exception specifications at the level of
program modules. This raises the level of abstraction of exception specifications,
helping developers to use exceptions consistently across many functions or methods
in a module.

– It makes exceptions more lightweight by allowing developers to omit exception
specifications from methods internal to a module, and providing refactoring tools
that support transitive changes to the remaining specifications. These tools reduce
the overhead of exception specification in general, and make evolving exception
specifications as lightweight as the corresponding edits to throw and catch clauses
in the code.

Additionally, in Section 5 we report both quantitative and qualitative data on the use
of exception specifications in open source Java applications. These data motivate and
validate the design of our tool.

2 Practical Exception Specifications

If an exception specification system is to be practical, we believe that it must posses
several essential properties; we enumerate these here. We use the general term “excep-
tion policy” to refer to programmers’ design intent regarding how exceptions should be
used and handled. An exception policy specifies the types of exceptions that may be
thrown from a particular scope and the properties that exception handlers must satisfy.
We use the general term “module” to refer to a set of logically related compilation units



to which access control can be applied (i.e., the module can have a public interface, and
private implementation details).

In our view, a good exception specification system, which may include both lan-
guage features and tools, should be lightweight while sufficiently expressive, and should
facilitate creating, understanding, and evolving specifications.

2.1 Specification Overhead

The specification system must be lightweight. Programmers are not fond of writing
specifications, so the benefits must clearly outweigh the costs. Additionally, incremental
effort should, in general, yield incremental results. If a specification system requires
that an entire program be annotated before producing any benefit, it is unlikely to be
adopted.

2.2 Expressiveness

The system should allow specifying exception policies at an appropriate level of ab-
straction. It should support the common policy of limiting the exception types that may
be thrown from some scope. Such scopes need not be limited to a method or a class.
Rather, they could consist of a set of methods, a set of classes, or a module. In our
example in Section 1.1, we illustrated how a programmer might use such a policy.

Additionally, there should be a way to specify a policy independently of its imple-
mentation, though an implementation may perhaps be generated from a policy (e.g.,
code to log exceptions, or wrap some exception and rethrow). Solutions that make it
easy to implement a policy are useful, but they do not obviate the need for one. Until it
is possible to generate all desired implementations automatically—which may not ever
be fully achievable—we believe that the distinction between specification and imple-
mentation is an important one.

2.3 Ease of Creating and Understanding Policies

The solution should provide tools that aid programmers in creating new exception poli-
cies and understanding existing policies. Without the aid of such tools, reasoning about
exceptions is difficult due to their non-local nature. Such tools may, for example, in-
clude information on exception control flow.

2.4 Maintainability

The specification scheme should support evolving specifications as the code evolves,
possibly through tool support. This differs from the property of being lightweight; a
system may be lightweight but inflexible. The cost involved in changing specifications
should generally be proportional to the magnitude of the code change.

In Java and in other commonly-used languages, exceptions automatically propagate
up the call chain if there is no explicit handler. A specification system for these lan-
guages should take these semantics into account, so that small code changes do not
require widespread specification changes.



3 Related Work

Previous solutions have failed to meet one or more of the criteria described above; we
describe each of these here.

3.1 Java

One well-known exception specification scheme is that of Java, which requires that all
methods declare the checked exceptions that they directly or indirectly throw.1

Though we believe it is useful to separate exceptions into the categories of checked
and unchecked (see, for example, [14, 2]), the Java design has a number of problems
that make it impractical. Javathrows declarations are too low-level; they allow spec-
ifying only limited exception policies at the method level. This leads, in part, to high
specification overhead. It is notoriously bothersome to write and maintainthrows dec-
larations. Simple code modifications—a method throwing a new exception type; mov-
ing a handler from one method to another—can result in programmers having to update
the declarations of an entire call chain.

There is anecdotal evidence that this overhead leads to bad programming behav-
iors [4, 26, 10]. Programmers may avoid annotations by using the declarationthrows

Exception or by using unchecked exceptions inappropriately. Worse, programmers
may write code to “swallow” exceptions (i.e., catch and do nothing) to be spared the
nuisance of the declarations [19, 13].

Eclipse2 provides a “Quick Fix” for updating a method’sthrows declaration if
it throws an exception that is not in its declaration, but this can only be applied to a
single method at a time. Consequently, programmers would have to iteratively update
declarations until a fixpoint was reached. Eclipse also includes an optional warning that
will list methods whosethrows declarations are imprecise, but this too applies to a
single method at a time.

Empirical results Based on our experience with Java programs, we hypothesized that
even if programmers use checked exceptions as the language designers intended, ex-
ception declarations can easily become imprecise. To verify this, we analyzed several
open-source Java programs. Descriptions of the programs analyzed, along with their
code size, are displayed in Table 1.

In this discussion, we use the following definitions: athrows conjunctis an indi-
vidual exception type listed in athrows declaration. For example, in the declaration
“ throws E1, E2”, E1 andE2 are throws conjuncts. A throws conjunctE of a method
m is impreciseif the analysis determines thatm throws a proper subtype ofE, but not

1 In Java, the classException is the supertype of all exception types. One of its subtypes
is RuntimeException , which representsuncheckedexceptions. Exceptions that are a sub-
type ofException but not a subtype ofRuntimeException arecheckedexceptions; sub-
types ofRuntimeException areunchecked exceptions. A method must declare all checked
exceptions that it throws (directly or transitively) in itsthrows declaration; unchecked ex-
ceptions may be omitted.

2 Available atwww.eclipse.org .



Table 1. Description of programs analyzed, along with lines of code (LOC denotes the non-
comment, non-blank lines of code) and number of classes and methods. The programTapestry
refers to the Apache Jakarta Tapestry project.

Program LOC ClassesMethodsDescription
LimeWire 61k 1291 8346 p2p filesharing client
Columba 40k 1054 5654 e-mail client
Tapestry 20k 515 3186 framework for developing web applications
JFtp 13k 104 1005 graphical network browser
Lucene 10k 178 1335 text search engine library
Metrics 7k 203 1378 Eclipse plugin, computes program metrics

Table 2. The number of throws conjuncts that were imprecise (proper subtype thrown), and su-
perfluous (not thrown at all), the total number of throws conjuncts, and the percentage of throws
conjuncts that were imprecise or superfluous. Within theimpreciseand superfluous conjuncts
columns, the total is displayed, as well as the number of instances where the imprecise or su-
perfluous throws conjunct was the exception supertypeException . Thesubsumesub-column
within the imprecise conjunctscolumn indicates the number of exception types that were sub-
sumed by theException declaration.

Program Imprecise conjuncts Superfluous conjunctsTotal throws Percent

Total
e= Exception

Total e= Exception
conjuncts of Total

occurrencessubsume
LimeWire 26 2 4 120 0 917 16%
Columba 275 274 1130 301 272 826 70%
Tapestry 16 10 30 93 20 231 47%
JFtp 5 5 9 17 1 27 81%
Lucene 7 2 5 209 0 598 37%
Metrics 1 0 0 17 0 78 23%

E itself; E is superfluousif m does not throwE nor any of its subtypes. Animprecise
throws declarationcontains one or more imprecise or superfluous throws conjuncts; a
superfluous throws declarationis comprised entirely of superfluous throws conjuncts.

Table 2 summarizes the number of imprecise and superfluous throws conjuncts, the
total number of throws conjuncts, and the percentage of throws conjuncts that were
either imprecise or superfluous. The table also lists the number of cases where the im-
precise or superfluous conjunct wasException . The declarationthrows Exception

is particularly problematic: aside from providing no information about exception flow,
it precludes the method’s client from writing anything other than a general exception
handler.

In our subject programs, there were numerous imprecise and superfluous throws
conjuncts; their totals range from 19% to 85% of the total throws conjuncts. Averaged
over all the programs, one out of every 2 throws conjuncts is imprecise or superfluous.
The number of occurrences ofthrows Exception was also quite high in Columba
and Tapestry, relative to the exception declarations.

In the cases where the declarationthrows Exception was imprecise, we com-
puted the number of exception types that it subsumed, which is a measure ofhow im-
precise the declaration is. For example, if methodm declares that it throwsException ,
but can actually throwSMTPException , WrongPassphraseException , and
ParserException (all exception types defined by Columba), then in a sense,m’s
declaration is more imprecise than if it only threwSMTPException . The three excep-



tion types represent three opportunities for writing a handler that is specific to the error
condition that was raised, but this is obscured bym’s throws declaration.

Table 2 includes the total number of throws conjuncts that were subsumed by a more
general type (e.g., form, 3 conjuncts were subsumed). In Columba, the 274 instances
of the imprecise declarationthrows Exception subsumed 1130 exception types; an
average of 4.1 per occurrence. We also observed several cases where 7 or 8 exception
types, each of which appeared to represent semantically distinct error conditions, were
subsumed by the typeException . Thus, the imprecisethrows declarations were large
in both number and magnitude.

Aside from illustrating the difficulty of maintainingthrows declarations, these re-
sults cast doubt on whether they are even a good tool for understanding exception flow
and exception policies—though advocates often claim that this is one of their very bene-
fits [8, 25, 2, 24]. Imprecise and superfluousthrows declarations can obscure exception
flow, leading to violations of intended exception behavior orcatch blocks that are dead
code.

3.2 Other Work

There are several proposals for specifying method post-conditions on exceptional exit
[5, 15, 1], but these are even more heavyweight than Javathrows declarations. These
solutions do provide powerful verification capabilities, but it is unclear whether these
benefits will outweigh the significant cost of annotating an entire program.

Some researchers have proposed languages and language extensions to facilitate
the implementation of a policy, but these solutions provide no way tospecifythe policy.
These include languages with first-class exception handlers [3] and languages that allow
applying handlers to some set of methods or classes [12, 16]. However, unless new
tools are created, these features will further complicate the task of reasoning about
exceptions. It is also unclear how these schemes would work with programmer-supplied
specifications; as far as we are aware, this problem has not been addressed.

Robillard and Murphy [21] provide a good methodology (though not a tool) for
specifying exceptions at module boundaries; our tool builds on this work. A number of
researchers have developed exception analysis tools [22, 23, 11, 6], and while most of
these analyses are more sophisticated in terms of either precision or efficiency, they all
perform a whole-program analysis which has inherent scalability problems [20]. Most
of these analyses are superior to the one that we have implemented in our prototype
tool, as the goal of our work is not to perform exception inference but rather to provide
tools and a methodology for lightweight exception specifications.

For the task of understanding exception flow, Sinha et al. [23] propose a set of
views that display the results of their exception analysis, but for these they provide only
a high-level design.

4 Features of ExnJava

We have designed and implemented an exception specification system for Java 1.4 that
satisfies the initial criteria outlined in Section 2. Our design raises the level of abstrac-
tion of exception specifications, while remaining lightweight.



Our current simplifying assumption is to take a Java package as a unit of modularity.
Thus, methods with public or protected visibility are the package’s interface methods;
private and package-private3 methods are internal methods.

Our system, ExnJava, is implemented as an Eclipse plugin. It contains one lan-
guage change: the Java rules for methodthrows declarations are relaxed such that
only packageinterface methodsrequire athrows declaration. ExnJava also includes
package-level exception specifications, checked on every compilation. This is imple-
mented as an extra-linguistic feature. Additionally, there is aThrown Exceptions view
to facilitate creating and understanding exception policies. Three refactorings help pro-
grammers evolve specifications:Propagate Throws Declarations, Convert to Checked
Exception, andFix Imprecise Declarations. In the subsections below, we describe each
of these features.

4.1 Exception inference

The main goal of ExnJava’s exception inference is to determine the checked exceptions
that each method throws, and use these to ensure that methods adhere to package excep-
tion specfications and to infer thethrows declarations for private and package-private
methods. Our analysis does compute the unchecked (i.e. “runtime”) exceptions that are
explicitly thrown by the program, but this analysis is unsound and intended merely to
provide additional information. The reason for this design choice is that the goal of our
work is to allow programmers to specify and check exceptionpolicies, and unchecked
exceptions are not suitable for this task.

Analysis modes ExnJava can be run in two modes:per-package modeor whole-
program mode. Programmers can choose the former for a more scalable analysis, or
the latter for more detailed information. Both analyses provide complete information
about the checked exceptions that each method throws, but the whole-program anal-
ysis provides information about exception control flow between packages. The same
views and refactorings are available in either mode (with the exception of theConvert
to Checked Exception refactoring).

Per-package analysisThis is the main mode of operation for ExnJava. This analysis is
quadratic in the size of the largest package and scales well to large programs.

Whole-program analysisThis analysis is useful in cases where a programmer requires
a detailed understanding of exception flow, and for theConvert to Checked Exception
refactoring. However, its worst-case complexity is quadratic in the size of the program
and therefore may not be efficient enough for frequent interactive use.

Analysis algorithm Since ExnJava does not require throws declarations on all meth-
ods, there is an inference algorithm to determine the checked exceptions thrown by

3 Also known as “default” or “friendly” access.



internal methods. ExnJava analyzes each package as a whole and performs a conser-
vative intra-procedural dataflow analysis, similar to that of previous systems [22]. The
analysis determines the checked exceptions thrown by each internal method (through
either athrows statement or a call to an interface method or a library method) and it-
erates until a fixpoint is reached. For calls to non-final (i.e., virtual) methods, the union
of the exceptions thrown by all known overriding methods are considered.

4.2 Specifying Exception Policies

In ExnJava, programmers specify exception policy at the package level. We believe this
is a more appropriate level of abstraction than the low-level declarations of previous
solutions, such as method-level declarations in Java. A package has two kinds of excep-
tion policy: one applies to each individual interface method, the other to the package as
a whole.

Interface Method Policies. The exception policy of interface methods is specified us-
ing Javathrows declarations. In contrast to Java however, the declarations for internal
methods need not be specified—they are inferred by ExnJava.4 Consequently, this de-
sign raises the level of abstraction ofthrows declarations.

To determine the checked exceptions thrown by internal methods, ExnJava performs
an intra-package dataflow analysis. Within a package, the implementation of our anal-
ysis is similar to the whole-program analyses of previous systems [22, 23]. However,
our analysis is scalable, as it depends on the size of each package rather than the size of
the entire program. The results of this analysis, as well as additional information about
exception control flow, are displayed in theThrown Exceptions view, described below
in Section 4.3.

There are several advantages to this scheme. First, annotations are more lightweight.
As we describe in Section 5.1, in our subject programs we found that inference reduces
the number of required declarations by a range of 50% to 93%. Also, inference gives
programmers more precise information. Rather than examine Javathrows declara-
tions, programmers use theThrown Exceptions view to determine the checked excep-
tions thrown by internal methods. And, in contrast to a pure exception inference tool,
programmers can enforce exception policies by specifyingthrows declarations on in-
terface methods.

Package Exception Policies.Our design of package exception policies extends the
work of Robillard and Murphy [21]. Their work, in turn, builds on work by Litke [17],
who provides recommendations for designing systems with good exception structure (in
the context of Ada). Litke’s recommended software engineering practice is that excep-
tions that can occur at module boundaries to be precisely and completely specified.5

Litke argues that using modules reduces complexity, making it easier for program-
mers to reason about program behavior and to write and modify error handlers. He also

4 It may sometimes be useful to includethrows declarations on internal methods; this is sup-
ported.

5 Litke uses the term “compartment”, but this is equivalent to our definition of “module.”



recommends the use of automated methods for checking conformance of the program
against the module specifications.6

For simplicity, our approach considers each Java package as a module; the pack-
age’s public and protected methods are the module boundaries.7 For each package, its
exception specification (which corresponds to Litke’s module specification) consists
of a list of entries that are either exception class names or regular expressions (e.g.,
java.lang.* ). An exception typeE can be thrown from a package interface method
if either E or a supertype ofE is listed in the specification, or ifE’s fully-qualified
name matches a regular expression in the specification.

Unchecked exceptions can be included in the specification; however, to ensure con-
formance, the entire program, including any libraries that are used, would have to be
analyzed. Therefore, the analysis can find some violations of such specifications, but
cannot assure complete conformance with the specified policy.

Package exception specifications thus ensure that the exception policy of each in-
terface method (the types of exceptions that they throw) also conforms to the general
exception policy of the package. Recall the example of Section 2.2 where the stor-
age details of the user preferences package were to be hidden from clients. This pack-
age’s specification would include perhapsPreferenceStoreException but would
not includeFileNotFoundException . If such an exception were thrown within the
package, the exception could be wrapped as a higher-level exception type (such as
PreferenceStoreException ). This idiom, called exception translation, is recom-
mended by Bloch [2] (among others) and is common in Java programs.

Figure 2 is a representative excerpt of our package exception specification of the
Columba program; we defined this specification while performing the case study de-
scribed below (Section 5.2). The entry for theorg.columba.mail.plugin package
is particularly interesting, as it suggests that some low-level exceptions are inappropri-
ately thrown, while they should probably be wrapped by a more abstract exception type.
We will revisit this issue in Section 5.2.

4.3 Understanding Exception Policies

TheThrown Exceptions view (Figure 3) displays the details of exception control flow,
to help programmers understand the implemented exception policies. Without the in-
formation provided by this view, we believe that it would be difficult to correctly create
and modify exception policies. We believe that the general difficulty of programming
with exceptions is partly due to lack of information on a program’s exceptional control
flow.

The Thrown Exceptions view displays information computed by either a whole-
project analysis or a per-package exception analysis (as described above); the former
will provide more information, but the latter is more scalable. The view has two modes:
method level and package level. The method level view, inspired by the work of Sinha

6 As far as we are aware, Litke did not publish any work regarding such a tool, though one paper
[17] mentioned that an implementation was in progress.

7 It would also be possible to devise a module specification language, where a module could
consist of a set of packages or classes; we will consider this in future work.



Fig. 2. Excerpt of our package exception specification for the Columba application.
IOException refers tojava.io.IOException . The other unqualified exception names
refer to application-defined checked exceptions.

org.columba.mail.pop3 IOException, CommandCancelledException, ParserException,
POP3Exception

org.columba.mail.smtp IOException, CommandCancelledException, SMTPException

org.columba.mail.pgp IOException, WrongPassphraseException, JSCFException

org.columba.mail.plugin java.lang.ClassNotFoundException,
java.lang.IllegalAccessException,
java.lang.InstantiationException,
java.lang.NoSuchMethodException,
java.lang.reflect.InvocationTargetException,
java.net.MalformedURLException,
PluginHandlerNotFoundException

Fig. 3.TheThrown Exceptions view in method level mode.

et al [23], displays a tree view of the project’s methods, grouped by package and class.
For each method, the checked and unchecked exceptions8 thrown by the method are
listed, as well as the lines of code that cause the exception to be thrown. Using this
view, the programmer can jump to method definitions that throw exceptions, and can
also quickly jump to the ultimate sources of a particular exception (i.e., the original
throw statements or library method calls that caused an exception to flow up to this part
of the code.) Additionally, for each exception that a method throws, the view displays
all catch blocks that may handle that exception. (This is limited, of course, to catch
blocks in code available to the analysis.)

8 Information on unchecked exceptions will not be complete, due to the fact that a whole-
program analysis (including all libraries used) would be required. However, even partial in-
formation on unchecked exceptions can be useful.



The package level view displays, for each package, the checked exceptions that are
thrown by its interface methods. For each exception type, the methods that throw the
exception are listed, as well as the detailed exception information described above. The
package view can be useful for creating a package’s exception policy. (In fact, we used
it to define Columba’s exception policy in Figure 2.) The view can also help identify
possible errors in the exception policy. For example, if a particular exception type is
only thrown by one or two methods, it is possible that the exception should have been
handled internally or wrapped as a different exception type.

4.4 Evolving Exception Policies

Our system raises the unit of abstraction to which an exception specification applies;
this alone makes it easier to evolve specifications. If the set of exceptions thrown by
an internal method changes, nothrows declarations need to be updated, unless one
or more interface methods throw new exceptions. This often occurs when an exception
handler is moved from one method to another in the same package. Though this is
a conceptually simple modification, a number of internal methods may now throw a
different set of exceptions. In standard Java, thethrows declaration of each of these
methods would have to be manually updated.

Propagating Declarations. Still, if a code change causes aninterfacemethod to throw
new exceptions, the same “ripple effect” of Javathrows declarations may result—
requiring changes to the declarations of the transitive closure of method callers. To
avoid this problem, ExnJava provides aPropagate Throws Declarations refactoring (ac-
cessible as an Eclipse “Quick Fix”) that will propagate declarations up the call graph
(see Figure 4). The goal of this refactoring is to help programmers find the correct lo-
cation for new exception handlers, rather than tempting them to carelessly propagate
declarations to every method that requires them. To this end, the refactoring displays
a checkbox tree view of the call graph (which includes only methods whose declara-
tions need to be changed), which is initially collapsed to show only the original method
whose declaration needs to be updated. The programmer then expands this one level to
display the method’s immediate callers (and callers of the methods that it overrides),
and so on for each level in the tree. Checking a particular method in the tree will add
the declaration to both that method and all the overridden superclass methods (so as not
to violate substitutability).

The refactoring also incorporates the package exception specification; if updating
the throws declaration of a particular method would violate the package specification,
the method is displayed in a different color, with a tooltip describing the reason for the
inconsistency. The declaration for the method can still be changed, but ExnJava will
display an error until the package specification is modified.

Unchecked Exceptions.Sometimes, unchecked exceptions are used where checked
exceptions are more appropriate. In fact, some programmers prefer to use unchecked
exceptions during the prototyping phase, and then switch to checked exceptions later.



Fig. 4. The dialog for propagating throws declarations. Methods that are typeset in italics are
those for which the package specification does not allow throwing this particular exception type.

ExnJava includes aConvert to Checked Exception refactoring which changes an ex-
ception’s supertype toException and updates allthrows declarations in the program
accordingly.

Imprecise Exceptions. As previously noted,throws declarations can become unin-
tentionally imprecise as code evolves: they may include exception types that are never
thrown or types that are too general. (Of course, sometimes imprecise declarations are
an intentional design choice, to provide for future code changes. Our tool allows pro-
grammers to retain such declarations.)

When acatch block is moved from one package to another, for example, a num-
ber of interface methods may include an exception type that they will consequently
never throw. New callers of these methods will then have to include handlers for these
exceptions—which would be dead code—or must themselves add superfluous excep-
tions to theirthrows declarations. Such problems do occur in actual code; for example,
Robillard and Murphy found a number of unreachable catch blocks in their analysis of
several Java programs [22].

To solve this problem, ExnJava includes anFix Imprecise Declarations refactoring,
which can be run on a package or set of packages. The refactoring first lists the excep-
tion types which appear in imprecise declarations; the programmer chooses an excep-
tion type from this list. The exception type is chosen first so that the view can show
the propagation of this exception declaration. For this exception, the view displays all
methods where that type appears in an imprecise declaration. The view displays a call
graph tree (similar to that of thePropagate Throws Declarations refactoring) showing
the propagation of imprecise declarations. This allows the programmer to determine the
effect of fixing (or not fixing) a particular imprecise declaration. Initially all methods are
checked, indicating that their declarations will be updated; the programmer can choose
to not change the declarations for particular methods by unchecking them. (We chose



this design as we hypothesize that most imprecise declarations are out-of-date rather
than intentional design choices.) The view ensures that a consistent set of methods is
chosen; if a method is unchecked, all of its transitive callers will also be unchecked.

Our tool could be extended to include a “Fix Imprecise” refactoring at the package
specification level, to inform the programmer of specifications that may no longer be
valid. Such a tool would display each package whose specification lists one or more
exceptions that are not actually thrown in the implementation.

5 Evaluation

We evaluated ExnJava with quantitative analyses and with case studies. Exception infer-
ence was evaluated for 1) its potential annotation savings and 2) its impact on reducing
the incidence of imprecise and superfluousthrows declarations. We also analyzed the
annotation overhead of package exception specifications. Finally, we conducted case
studies to determine how ExnJava could be used to improve a program’s exception
structure and ease program understanding and maintenance.

5.1 Quantitative Results

Package-private inference.ExnJava’s checked exception inference is most useful for
programs with well-encapsulated packages with as few public members as possible. We
hypothesized that the visibility of classes and methods are often not restrictive enough;
that is, many classes and methods are public when in fact they should be package-
private or private. To this end, we have developed an Eclipse plugin that changes the
visibility modifiers on classes and methods topackage-privatewherever possible (i.e.,
when they are not accessed outside of their defining package).

Table 3. Percentage of methods that were private or package-private before and after visibil-
ity modifier refactoring. The results show that a significant percentage of methods have weaker
visibility modifiers than are necessary.

Package-private and Private Methods
Program Methodsbefore refactoring after refactoring
LimeWire 8346 38% 67%
Columba 5654 10% 57%
Tapestry 3186 14% 75%
JFtp 1005 14% 58%
Lucene 1335 46% 73%
Metrics 1378 27% 72%

We found that the percentage of package-private methods increases dramatically
when this refactoring is applied; results are displayed in Table 3. Grothoff et al.
found similar results in their work on confined types [9]. Note that in computing this
data, we considered theactual visibility of methods, not merely the method’s access
modifier (e.g., a method withpublic visibility in a private class was counted as
a private method). Before refactoring, an average of 25% of methods were private or



package-private, as compared to an average of 67% after refactoring. However, for
some of these programs (for example, Tapestry and Lucene), the refactoring may have
been too aggressive: it is likely that some of the classes and methods that were changed
to package-private were intended to be used by library clients. On the other hand,
classes in the programs LimeWire, Columba, JFtp, and Metrics were not intended
to be used directly by clients (aside from some plugin capabilities in Columba and
Metrics that were excluded from the refactoring), so the refactoring for these was likely
accurate.

Effectiveness of inference.In the discussion that follows,inferable checked excep-
tions denote checked exceptions that could be inferred by our analysis, and therefore
omitted by the programmer (that is, exceptions thrown by private and package-private
methods). Table 4 compares the number of inferable checked exceptions before and
after the package-private refactoring was performed, as computed by a whole-program
analysis. As expected, the percentage of inferable exceptions was closely related to the
percentage of private and package-private methods in the program. In these programs,
50% to 93% of thrown checked exceptions could be omitted with ExnJava.9

Table 4.Total number of exceptions thrown, and percentage of inferable checked exceptions be-
fore and after package-private refactoring. Each exception type thrown by a method was counted
separately. Exceptions thrown were computed using the whole-program exception analysis.

Checked Percent Inferable ExceptionsProgram
Exns Thrownbefore refactoringafter refactoring

LimeWire 966 45% 72%
Columba 1510 44% 50%
Tapestry 146 12% 75%
JFtp 14 44% 93%
Lucene 492 56% 81%
Metrics 54 23% 72%

We also found that many occurrences of imprecise and superfluous throws conjuncts
are on private and package-private methods; see Table 5. The data suggests that 53% to
78% of these could be eliminated without any additional tool support. That is, by sim-
ply removing allthrows declarations from private and package-private declarations,
ExnJava will eliminate more than half of the imprecise declarations through its excep-
tion inference. Of course, there are still a number of public and protected methods with
imprecise or superfluous declarations, for which ExnJava does not perform inference.
As it would be very error-prone and tedious to correct these by hand, we believe that
tool support such as ourFix Imprecise Declarations refactoring would be beneficial.

We computed the average number of exceptions thrown by packages in our sub-
ject programs, and our results indicate that package exceptions specifications have a
very low annotation overhead: in most applications, packages generally throw a small
number of exception types—fewer than 2 exceptions per package, on average.

9 This data essentially assumes that allthrows declarations are precise. However, we derived
very similar results when considering the actual, imprecisethrows declarations.



Table 5.The number of imprecise or superfluous throws conjuncts and the number of superfluous
throws declarations; the percentage of each these that are on private or package-private methods
(and that could therefore be inferred). Data was gathered after package-private refactoring was
performed.

Imprecise/ Private or Superfluous Private or
superfluouspkg-private ”throws” decl pkg-privateProgram
conjuncts

LimeWire 146 53% 108 42%
Columba 576 42% 291 40%
Tapestry 109 68% 72 69%
JFtp 22 59% 16 44%
Lucene 216 75% 209 75%
Metrics 18 78% 13 69%

5.2 Case studies

We used the programs Columba and LimeWire as subjects of our case studies, as they
are the largest two programs and contain the most uses of exceptions. The two pro-
grams were quite different in their exception structure: Columba had very poor excep-
tion structure and exception handling. Though it had no application-defined unchecked
exceptions, the declarationthrows Exception was ubiquitous. In contrast, LimeWire
had a well-designed exception structure. Despite the fact that it was the largest program
we analyzed and contained the most uses of exceptions, it had the fewest percentage of
imprecise and superfluous exceptions (see Table 2).

Columba. As described in Section 3.1, Columba had many imprecisethrows declara-
tions, and these subsumed an average of 4.1 exception types that were actually thrown.
Thus, in this program,throws declarations are useless for inferring a package excep-
tion policy; consideringthrows alone, of the 61 packages that threw exceptions, 38 of
them containedException , or 62%.

We therefore examined the package exception specification for Columba
as inferred by the whole-program analysis. We found that two packages,
org.columba.mail.plugin and org.columba.core.plugin , appeared to be
throwing exceptions that were inappropriate to the abstraction (see Figure 2).
These packages were involved with loading user-defined plugins and were each
throwing 5 low-level exceptions related to class loading. Inspecting thethrow

point for each of these exception revealed that they all originated from the
org.columba.core.loader package, which actually performed the class loading
operation. Further, there were no specific handlers for the 5 low-level exceptions in
clients of the plugin packages, while there were handlers for an existing exception
PluginLoadingFailedException . In the plugin packages, we found a few cases
where the low-level exceptions were translated to this type. This all suggests that the
intended policy was that the class loading-related exceptions be wrapped as the more
meaningfulPluginLoadingFailedException , but this policy was inconsistently
applied.

Adding just two handlers to perform this exception translation had the effect that
only thecore.loader package threw the low-level exceptions and theplugin pack-
ages threw only plugin-related exceptions. The total number of exceptions thrown by



each package was reduced from 201 to 193 (at the very start of our refactoring, this
total was 229); the resulting exception structure is simpler and better modularized. This
could probably be improved further, but would require an understanding the design
intent of the various packages.

We were also surprised to discover that our inference determined that the super-
type Exception was thrown by 7 different packages. Similar to a throws declaration
of throws Exception , a package specification that includesException provides
no information and essentially circumvents the package specification checking. The
source of the problem was two abstract methods relating to the operation of encod-
ing a MIME attachment in an e-mail message. We will discuss one of these methods,
renderMimePart , though the discussion applies to the other method as well (in fact,
the same catch block handled exceptions from both methods).

The abstract methodrenderMimePart was presumably given the declaration
throws Exception to provide implementers with maximum flexibility. However, this
flexibility comes at a high cost: none of its clients would be able to write specific ex-
ception handlers, unless they knew that some particular mime encoder object was used.
Most of the implementations of this method did not throw any exceptions, but the im-
plementation inMultipartEncryptedRenderer could throw a checked exception,
EncryptionException . This exception was a direct subtype ofException .

Using our exception view (Figure 3) which shows the handlers that may han-
dle a particular exception, we determined that there was only one catch blockc
that could catch exceptions from this source, and that it did not catch any in-
stances ofEncryptionException originating from other throw points. The han-
dler c was contained within code that was responsible for sending an e-mail mes-
sage. If anEncryptionException was thrown, the message composer window
would be displayed along with an error message. Note that the action that was taken
was related to the fact that an exception occurred during MIME rendering, not that
there was a problem during encryption. We therefore created a new exception type
MimePartRenderException and wrapped the instance ofEncryptionException .

Note that it would not be easy for a developer to produce a correct implementa-
tion for the original handlerc. He could not simply look atthrows declarations to
determine thatEncryptionException could be thrown from the operation of MIME
rendering. There were many methods (including several that were called indirectly)
between the catch and the correspondingthrow points, and all were annotated with
throws Exception . We speculate that this exception handler was added after testing
uncovered this execution path.

We updated thethrows declarations in the methods that we changed and after
full exception inference the imprecision ofthrows declarations were even more pro-
nounced. There were an additional 81 imprecise or superfluous throws conjuncts—now
80% of all throws conjuncts were imprecise or superfluous (up from 70%). Somewhat
unsurprisingly, there were 168 catch handlers that caught the typeException , com-
prising 31% of all catch handlers. Manual inspection of a subset of these handlers re-
vealed that most did little more than log a message to the console. We suspect that more
specific error handlers would make the program more robust, but it is obviously difficult
to write such handlers if 80% of throws conjuncts do not provide accurate information.



LimeWire. As mentioned previously, LimeWire had a very good exception design and
contained much fewer imprecise exceptions declarations than Columba. There were
only two application-defined unchecked exceptions, one of which represented an asser-
tion failure. We converted the other one to a checked exception using our refactoring,
though this required few new annotations (the exception was always being caught by
the immediate callers).

There were no obvious cases where a package in LimeWire was throwing inap-
propriate exception types. Many packages threwIOException , which made this task
more difficult. LimeWire had 12 application-defined subtypes ofIOException , so it
is likely that some packages should have been throwing one of these subtypes. It is
also unclear whether it was appropriate for all of these exceptions to be subtypes of
IOException , since some of them were generated by actual I/O operations, while
others were generated in response to a higher-level network event. However, as in
Columba, considering actualthrows declarations made it difficult to understand the
exception behavior of each package; according to the declarations, packages threw a
total of 50 exceptions, as compared to 80 as computed by inference. The discrepancy
was caused by imprecise exception declarations.

5.3 Performance

Analysis times for our prototype whole-program and per-package analysis are displayed
in Table 6, as measured on a 3.2 GHz Pentium 4. We measured only the time for the
exception analysis itself, after the AST was loaded and dependencies were computed.
The average time to analyze each package in the per-package analysis is reasonable,
and optimizations would likely improve this quite a bit.

We were limited by the high memory consumption of the program analysis infras-
tructure that we used, and were unable to analyze programs that were much larger than
LimeWire, though this is not a problem inherent in our analysis. We are currently work-
ing to address this issue.

Table 6.Analysis times for whole-program analysis, total per-package analysis (entire program),
and average time to analyze one package in the per-package analysis.

Whole Total Average
Program LOC programper-packageper-package
LimeWire 61k 180 s 126 s 2210 ms
Columba 40k 68 s 51 s 411 ms
Tapestry 20k 29 s 17 s 304 ms
JFtp 13k 10.4 s 10 s 1250 ms
Lucene 10k 9.6 s 9.5 s 950 ms
Metrics 7k 10 s 9 s 563 ms

6 Summary and Future Work

We have described a novel exception specification methodology which combines in-
ferred and programmer-specified annotations and illustrated how this scheme can be



used to display a variety of analysis results to the user. The basic design of this scheme
is applicable to any language with dynamically bound exception handlers, and where
exception propagation is performed automatically. We have also provided quantitative
evidence that our design addresses many of the problems of a commonly used exception
specification system—that of Java.

Future work includes support for Java 1.5 generics, which will require changes to
both our underlying algorithm and the implementation. We would also like to support
richer exception specifications. The expressiveness of exception specifications would
be greatly increased if they would be applicable tomodulesrather than Java packages.
A module would consist of a set of Java classes, and there would be support for hi-
erarchical modules with support for controlling visibility. We are currently designing
such a module system, and our initial experiments indicate that performing exception
inference over a module rather than a package can reduce the number of programmer-
supplied annotations by up to an order of magnitude.

We are also considering support for a lightweight notation for specifying the high-
level properties of handlers in the module exception specification (such properties need
not be exposed to clients, as they may express implementation details). Some examples
of policies we would like to support include: “handlers for exceptions of typeE should
be non-empty”; “thrown exceptions of typeE should be logged”; “exceptions of type
E should always be wrapped as typeF before they escape the interface of this scope.”

7 Acknowledgments

We would like to thank David Garlan and George Fairbanks for their comments on an
earlier version of this paper, and Bill Scherlis for his suggestions and discussions.

This work was supported in part by NASA cooperative agreements NCC-2-1298
and NNA05CS30A, NSF grant CCR-0204047, and the Army Research Office grant
number DAAD19-02-1-0389 entitled “Perpetually Available and Secure Information
Systems.”

References

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system.
In Cassis International Workshop, Ed. Marieke Huisman, 2004.

[2] Joshua Bloch.Effective Java. Addison-Wesley Professional, 2001.
[3] Christophe Dony. A fully object-oriented exception handling system: rationale and

Smalltalk implementation. InAdvances in exception handling techniques, pages 18–38,
New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[4] Bruce Eckel.Thinking in Java, 3rd edition. Prentice-Hall PTR, December 2002.
[5] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Extended static

checking for Java. InProceedings of PLDI 2002, 2002.
[6] Chen Fu, Ana Milanova, Barbara Ryder, and David Wonnacott. Robustness testing of Java

server applications. InIEEE Transactions on Software Engineering, pages 292–312, April
2005.

[7] Alessandro F. Garcia, Cecı́lia M. F. Rubira, Alexander B. Romanovsky, and Jie Xu. A com-
parative study of exception handling mechanisms for building dependable object-oriented
software.Journal of Systems and Software, 59(2):197–222, 2001.



[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.Java(TM) Language Specification,
The (3rd Edition) (Java Series). Addison-Wesley Professional, July 2005.

[9] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with confined
types. InProceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA ’01), pages 241–255. ACM
Press, 2001.

[10] Anson Horton. Why doesn’t C# have exception specifications? Available at
http://msdn.microsoft.com/vcsharp/ team/language/ask/exceptionspecs.

[11] Jangwoo Jo, Byeong-Mo Chang, Kwangkeun Yi, and Kwang-Moo Choe. An uncaught
exception analysis for Java.Journal of Systems and Software, 2004.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of AspectJ. InECOOP ’01: Proceedings of the 15th European Con-
ference on Object-Oriented Programming, pages 327–353, London, UK, 2001. Springer-
Verlag.

[13] Joseph R. Kiniry. Exceptions in Java and Eiffel: Two extremes in exception design and
application. InProceedings of the ECOOP 2003 Workshop on Exception Handling in
Object-Oriented Systems, 2003.

[14] Jorgen Lindskov Knudsen. Fault tolerance and exception handling in BETA. InAdvances
in exception handling techniques, pages 1–17, New York, NY, USA, 2001. Springer-Verlag
New York, Inc.

[15] K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. InSEFM, pages
218–227. IEEE Computer Society, 2004.

[16] Martin Lippert and Cristina Videira Lopes. A study on exception detecton and handling
using aspect-oriented programming. InProceedings of the 22nd International Conference
on Software Engineering (ICSE ’00), pages 418–427. ACM Press, 2000.

[17] John D. Litke. A systematic approach for implementing fault tolerant software designs in
Ada. InProceedings of the conference on TRI-ADA ’90, pages 403–408. ACM Press, 1990.

[18] Robert Miller and Anand Tripathi. Issues with exception handling in object-oriented sys-
tems. InECOOP, pages 85–103, 1997.

[19] Darell Reimer and Harini Srinivasan. Analyzing exception usage in large Java applications.
In Proceedings of the ECOOP 2003 Workshop on Exception Handling in Object-Oriented
Systems, 2003.

[20] Martin P. Robillard, May 2005. Personal communication.
[21] Martin P. Robillard and Gail C. Murphy. Designing robust Java programs with exceptions.

In Proceedings of the 8th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE ’00), pages 2–10. ACM Press, 2000.

[22] Martin P. Robillard and Gail C. Murphy. Static analysis to support the evolution of excep-
tion structure in object-oriented systems.ACM Trans. Softw. Eng. Methodol., 12(2):191–
221, 2003.

[23] Saurabh Sinha, Alessandro Orso, and Mary Jean Harrold. Automated support for devel-
opment, maintenance, and testing in the presence of implicit control flow. InProceedings
of the 26th International Conference on Software Engineering (ICSE ’04), pages 336–345.
IEEE Computer Society, 2004.

[24] Bill Venners. Interface Design: Best Practices in Object-Oriented API Design in Java.
Available at http://www.artima.com/interfacedesign, 2001.

[25] Bill Venners. Failure and exceptions: a conversation with James Gosling, Part II. Available
at http://www.artima.com/intv/solid.html, September 2003.

[26] Bill Venners and Bruce Eckel. The trouble with checked exceptions: A conversation with
Anders Hejlsberg, Part II.
Available at http://www.artima.com/intv/handcuffs.html, August 2003.


