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Abstract
Multiple inheritance has long been plagued with the “dia-
mond” inheritance problem, leading to solutions that restrict
expressiveness, such as mixins and traits. Instead, we ad-
dress the diamond problem directly, considering two diffi-
culties it causes: ensuring a correct semantics for object ini-
tializers, and typechecking multiple dispatch in a modular
fashion—the latter problem arising even with multiple inter-
face inheritance. We show that previous solutions to these
problems are either unsatisfactory or cumbersome, and sug-
gest a novel approach: supporting multiple inheritance but
forbidding diamond inheritance. Expressiveness is retained
through two features: a “requires” construct that provides
a form of subtyping without inheritance (inspired by Scala
[40]), and a dynamically-dispatched “super” call similar to
that found in traits. Through examples, we illustrate that in-
heritance diamonds can be eliminated via a combination of
“requires” and ordinary inheritance. We provide a sound for-
mal model for our language and demonstrate its modularity
and expressiveness.

Categories and Subject Descriptors D3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Multiple inheritance, diamond problem, multi-
methods, modularity

1. Introduction
Single inheritance, mixins [12, 5, 24, 22, 4, 9], and traits
[19, 23, 40] each have disadvantages: single inheritance re-
stricts expressiveness, mixins must be linearly applied, and
traits do not allow state. Multiple inheritance is one solution
to these problems, as it allows code to be reused along multi-
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ple dimensions. Unfortunately however, multiple inheritance
poses challenges itself.

There are two types of problems with multiple inheri-
tance: (a) a class can inherit multiple features with the same
name, and (b) a class can have more than one path to a given
ancestor (i.e., the “diamond problem”, also known as “fork-
join” inheritance) [43, 46]. The first, the conflicting-features
problem, can be solved by allowing renaming (e.g., Eiffel
[32]) or by linearizing the class hierarchy [47, 46]. However,
there is still no satisfactory solution to the diamond problem.

The diamond problem arises when a class C inherits an
ancestor A through more than one path. This is particularly
problematic when A has fields—should C inherit multiple
copies of the fields or just one? Virtual inheritance in C++
is designed as one solution for C to inherit only one copy of
A’s fields [21]. But with only one copy of A’s fields, object
initializers are a problem: if C transitively calls A’s initial-
izer, how can we ensure that it is called only once? Existing
solutions either restrict the form of constructor definitions,
or ignore some constructor calls [39, 21].

There is another consequence of the diamond problem:
it causes multiple inheritance to interact poorly with modu-
lar typechecking of multiple dispatch. Multiple dispatch is
a very powerful language mechanism that provides direct
support for extensibility and software evolution [14, 16];
for these reasons, it has been adopted by designers of
new programming languages, such as Fortress [2]. Unfortu-
nately however, modular multimethods are difficult to com-
bine with any form of multiple inheritance—even restricted
forms, such as traits or Java-style multiple interface inher-
itance. Previous work either disallows multiple inheritance
across module boundaries, or burdens programmers by re-
quiring that they always provide (possibly numerous) dis-
ambiguating methods.

To solve these problems, we take a different approach:
while permitting multiple inheritance, we disallow inher-
itance diamonds entirely. So that there is no loss of ex-
pressiveness, we divide the notion of inheritance into two
concepts: an inheritance dependency (expressed using a
requires clause, an extension of a Scala construct [39]) and
implementation inheritance (expressed through extends).
Through examples, we illustrate that programs that are ex-
pressed using diamond inheritance can be translated to a



hierarchy that uses a combination of requires and extends,
without the presence of diamonds. As a result, our language,
CZ—for cubic zirconia—retains the expressiveness of dia-
mond inheritance.

We argue that a hierarchy with multiple inheritance is
conceptually two or more separate hierarchies. These hier-
archies represent different “dimensions” of the class that is
multiply inherited. We express dependencies between these
dimensions using requires, and give an extended example of
its use in Sect. 5.

Our solution has two advantages: fields and multiple in-
heritance (including initializers) can gracefully co-exist, and
multiple dispatch and multiple inheritance can be combined.
To achieve the latter, we make an incremental extension to
existing techniques for modular typechecking of multiple
dispatch.1

An additional feature of our language is a dynamically-
dispatched super call, modelled after trait super calls [19].
When a call is made to A.super. f () on an object with dy-
namic type D, the call proceeds to f defined within D’s
immediate superclass along the A path. With dynamically-
dispatched super calls and requires, our language attains the
expressiveness of traits while still allowing classes to inherit
state.

We have formalized our system as an extension of Feath-
erweight Java (FJ) [28] (Sect. 8) and have proved it sound
[31].

Contributions:
• The design of a novel multiple inheritance scheme2 that

solves (1) the object initialization problem and (2) the
modular typechecking of multimethods, by forbidding
diamond inheritance (Sections 2 and 4).

• Generalization of the requires construct and integration
with dynamically-dispatched super calls (Sect. 6).

• Examples that illustrate how a diamond inheritance
scheme can be converted to one without diamonds (Sec-
tions 3 and 5).

• Examples from actual C++ and Java programs, illustrat-
ing the utility of multiple inheritance and inheritance di-
amonds (Sect. 7).

• A formalization of the language, detailed argument of
modularity (Sect. 8), and proof of type safety.

• An implementation of a typechecker for the language, as
an extension of the JastAddJ Java compiler [20].

1 For simplicity and ease of understanding, our formal system only al-
lows dispatch on a method’s receiver and its first argument, corresponding
to double dispatch. The system can be easily generalized to n-argument
multimethods, as all interesting typechecking issues also arise in the two-
argument case. See Sect. 8 for further details.
2 This is a revised and expanded version of a paper presented at the
FOOL ’09 workshop [30]. (FOOL has no archival proceedings and is not in-
tended to preclude later publication.) The main changes are the inclusion of
multimethods rather than external methods and a new section on real-world
examples (Sect 7).

« constructor »
Stream(int)

Stream

« constructor »
InputStream(int)
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Stream.super(1024); Stream.super(2048);

Figure 1. An inheritance diamond. Italicized class names
indicate abstract classes.

2. Object Initialization
To start with, diamond inheritance raises a question: should
class C with a repeated ancestor A have two copies of A’s
instance variables or just one—i.e., should inheritance be
“tree inheritance” or “graph inheritance” [13]? As the for-
mer may be modelled using composition, the latter is the
desirable semantics; it is supported in languages such as
Scala, Eiffel, and C++ (the last through virtual inheritance)
[39, 32, 21]. Unfortunately, the object initialization problem
occurs in this semantics, depending how and when the su-
perclass constructor or initializer is called [47, 46].

The Problem. To illustrate the problem, consider Fig-
ure 1, which shows a class hierarchy containing a di-
amond. Suppose that the Stream superclass has a con-
structor taking an integer, to set the size of a buffer.
InputStream and OutputStream call this constructor with dif-
ferent values (1024 and 2048, respectively). But, when cre-
ating an InputOutputStream, with which value should the
Stream constructor be called? Moreover, InputStream and
OutputStream could even call different constructors with dif-
fering parameter types, making the situation even more un-
certain.

Previous Solutions. Languages that directly attempt to
solve the object initialization problem include Eiffel [32],
C++ [21], Scala [39] and Smalltalk with stateful traits [8].

In Eiffel, even though (by default) only one instance
of the repeatedly inherited class is included (e.g., Stream),
when constructing an InputOutputStream, the Stream con-
structor is called twice. This has the advantage of simplicity,
but unfortunately it does not provide the proper semantics;
Stream’s constructor may perform a stateful operation (e.g.,
allocating a buffer), and this operation would occur twice.

In C++, if virtual inheritance is used (so that there
is only one copy of Stream), the constructor problem
is solved as follows: the calls to the Stream construc-
tor from InputStream and OutputStream are ignored, and
InputOutputStream must call the Stream constructor explic-
itly.3 Though the Stream constructor is called only once, this
awkward design has the problem that constructor calls are

3 Since there is no default Stream constructor, this call cannot be automati-
cally generated.



ignored. The semantics of InputStream may require that a
particular Stream constructor be called, but the language se-
mantics would ignore this dependency by bypassing the con-
structor call.

Scala provides a different solution: trait constructors may
not take arguments. (Scala traits are abstract classes that may
contain state and may be multiply inherited.) This ensures
that InputStream and OutputStream call the same super-trait
constructor, causing no ambiguity for InputOutputStream.
Though this design is simple and elegant, it restricts ex-
pressiveness (in fact, the Scala team is currently seeking a
workaround to this problem [50]).

Smalltalk with stateful traits [8] does not contain con-
structors, but by convention, objects are initialized using an
initialize message. Unfortunately, this results in the same se-
mantics as Eiffel; here, the Stream constructor would be
called twice [7]. The only way to avoid this problem would
be to always define a special initializer that does not call the
superclass initializer. Requiring that the programmer define
such a method essentially means that the C++ solution must
be hand-coded. Aside from being tedious and error-prone,
this has the same drawbacks as the C++ semantics.

Mixins and traits do not address the object initialization
problem directly, but instead restrict the language so that the
problem does not arise in the first place. We compare CZ to
each of these designs in Sect. 3.2.

3. An Overview of CZ
This section describes the CZ language design at a high
level, including a description of how CZ addresses the object
initialization problem and a comparison to related language
designs.

3.1 CZ Design
CZ’s design is based on the intuition that there are relation-
ships between classes that are not captured by inheritance,
and that if class hierarchies could express richer intercon-
nections, inheritance diamonds need not exist. Suppose the
concrete class C extends A. As noted by Schärli et al., it
is beneficial to recognize that C serves two roles: (1) it is a
generator of instances, and (2) it is a unit of reuse (through
subclassing) [44]. In the first role, inheritance is the imple-
mentation strategy and may not be omitted. In the second
role, however, it is possible to transform the class hierarchy
to one where an inheritance dependency between C and A
is stated and where subclasses of C inherit from both C and
A. The key distinguishing feature of CZ is this notion of in-
heritance dependency, because while multiple inheritance is
permitted, inheritance diamonds are forbidden.

Consider the inheritance diamond of Fig. 1. To translate
this hierarchy to CZ, InputStream would be made abstract
and its relationship to Stream would be changed from in-
heritance to an inheritance dependency, requiring that (con-
crete) subclasses of InputStream also inherit from Stream. In

other words, InputStream requires the presence of Stream in
the extends clause of concrete subclasses, but it need not ex-
tend Stream itself. Since InputStream is now abstract (mak-
ing it serve only as a unit of reuse), it can be safely treated
as a subtype of Stream. However, any concrete subclasses
of InputStream (generators of instances), must also inherit
from Stream. Accordingly, InputOutputStream must inherit
from Stream directly.

We have reified this notion of an inheritance dependency
using the requires keyword, a generalized form of a similar
construct in Scala [40, 39].4

Definition 3.1 (Subclassing). The subclass relation is de-
fined as the reflexive, transitive closure of the extends rela-
tionship.

Definition 3.2 (Requires).
When a class C requires a class B, we have the following:

• C is abstract
• C is a subtype of B (but not a subclass)
• Subclasses of C must either require B themselves (mak-

ing them abstract) or extend B (allowing them to be con-
crete). This is achieved by including a requires B′ or
extends B′ clause, where B′ is a subclass of B.

In essence, C requires B is a contract that C’s concrete
subclasses will extend B.

The revised stream hierarchy is displayed in Fig. 2. In
the original hierarchy, InputStream served as both genera-
tor of instances and a unit of reuse. In the revised hierar-
chy, we divide the class in two—one for each role. The class
ConcreteInputStream is the generator of instances, and the
abstract class InputStream is the unit of reuse. Accordingly,
InputStream requires Stream, and ConcreteInputStream ex-
tends both InputStream and Stream. The concrete class
InputOutputStream extends each of Stream, InputStream,
and OutputStream, creating a subtyping diamond, but not a
subclassing diamond, as requires does not create a subclass
relationship.

The code for InputStream will be essentially the same as
before, except for the call to its super constructor (explained
further below). Because InputStream is a subtype of Stream,
it may use all the fields and methods of Stream, without
having to define them itself.

Programmers may add another dimension of stream
behavior through additional abstract classes, for instance
EncryptedStream. EncryptedStream is a type of stream,
but it need not extend Stream, merely require it. Con-
crete subclasses, such as EncryptedInputStream must in-
herit from Stream, which is achieved by extending
ConcreteInputStream. (It would also be possible to extend
Stream and InputStream directly.)

4 In Scala, requires is used to specify the type of a method’s receiver (i.e., it
is a selftype), and does not create a subtype relationship. As far as the Scala
team is aware, our proposed use of requires is novel [50].
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Figure 2. The stream hierarchy of Fig. 1, translated to CZ,
with an encryption extension in gray. Italicized class names
indicate abstract classes, solid lines indicate extends, and
dashed lines indicate requires.

The requires relationship can also be viewed as declaring
a semantic “mixin”—if B requires A, then B is effectively
stating that it is an extension of A that can be “mixed-in” to
clients. For example, EncryptedStream is enhancing Stream
by adding encryption. Because the relationship is explicitly
stated, it allows B to be substitutable for A.

Using requires is preferable to using extends because
the two classes are more loosely coupled. For example, we
could modify EncryptedInputStream to require InputStream
(rather than extend ConcreteInputStream). A concrete sub-
class of EncryptedInputStream could then also extend a sub-
class of InputStream, such as BufferedInputStream, rather
than extending InputStream directly. In this way, different
pieces of functionality can be combined in a flexible man-
ner while avoiding the complexity introduced by inheritance
diamonds.

Object initialization. Because there are no inheritance di-
amonds, the object initialization problem is trivially solved.
Note that if class C requires A, it need not (and should not)
call A’s constructor, since C does not inherit from A. In our
example, InputStream does not call the Stream constructor,
while ConcreteInputStream calls the constructors of its su-
perclasses, InputStream and Stream. Thus, a subtyping dia-
mond does not cause problems for object initialization.

This may seem similar to the C++ solution; after all, in
both designs, InputOutputStream calls the Stream construc-
tor. However, the CZ design is preferable for two reasons:
a) there are no constructor calls to non-direct superclasses,
and, more importantly, b) no constructor calls are ignored.
In the C++ solution, InputStream may expect a particular
Stream constructor to be called; as a result, it may not be
properly initialized when this call is ignored. Essentially, CZ
does not allow the programmer to create constructor depen-
dencies that cannot be enforced.

Using “requires”. Introducing two kinds of class rela-
tionships raises the question: when should programmers
use requires, rather than extends? A rule of thumb is

that requires should be used when a class is an exten-
sion of another class and is itself a unit of reuse. If nec-
essary, a concrete class extending the required class (such
as ConcreteInputStream) could also be defined to allow ob-
ject creation. Note that this concrete class definition would
be trivial, likely containing only a constructor. On the other
hand, when a class hierarchy contains multiple disjoint al-
ternatives (such as in the AST example in the next section),
extends should be used; the no-diamond property is also a
semantic property of the class hierarchy in question.

The above guideline may result in programmers defining
more abstract classes (and corresponding concrete classes)
than they may have otherwise used. However, some argue
that it is good design to make a class abstract whenever
it can be a base class. This is in accordance with the de-
sign of classes in Sather [49], traits in Scala and Fortress
[39, 2, 3], and the advice that “non-leaf” classes in C++ be
abstract [33]. In Sather and Fortress, for example, only ab-
stract classes may have descendants; concrete classes (called
“objects” in Fortress) form the leaves of the inheritance hi-
erarchy [49]. Furthermore, a language could define syntactic
sugar to ease the task of creating concrete class definitions;
we sketch such a design in Sect. 6.4.

3.2 Related Work
Subtyping and subclassing. Since requires provides sub-
typing without subclassing, our design may seem to bear
similarity to other work that has also separated these two
concepts (e.g. [27, 18, 49, 15, 29]). There is an important
difference, however, regarding information hiding. In a lan-
guage that separates subclassing and subtyping, an “inter-
face” type cannot contain private members; otherwise super-
classes would be able to access private members defined in
subclasses. Unfortunately, this restriction can be problem-
atic for defining binary methods such as the equals method;
its argument type must contain those private members for
the method be able to access them. But, for this type to con-
tain private members, it must be tied to a particular class
implementation, as only subclasses (as opposed to subtypes)
should conform to this type. See Appendix A for an example
illustrating this issue.

This difficulty does not arise when using requires, as
it establishes a stronger relationship than just subtyping;
concrete subclasses must (directly or indirectly) inherit
from the required class, as opposed to any class that pro-
vides a particular interface. Therefore, Stream may de-
fine an equals(Stream) method, and objects of type e.g.
InputStream, OutputStream, or InputOutputStream may be
safely passed to this method. Since the private member is de-
fined in Stream and is only accessed by a method of Stream,
this does not violate information hiding.

Mixins. Mixins, also known as abstract subclasses, pro-
vide many of the reuse benefits of multiple inheritance while
fitting into a single inheritance framework [12, 5, 24, 22, 4,



9]. While mixins allow defining state, they have the draw-
backs that they must be explicitly linearized by the pro-
grammer and they cannot inherit from one another (though
most systems allow expressing implementation dependen-
cies, such as abstract members). If mixin inheritance were
allowed, this would be essentially equivalent to Scala traits,
which do have the object initialization problem. Addition-
ally, the lack of inheritance has the consequence that mixins
do not integrate well with multiple dispatch; multiple dis-
patch requires an explicit inheritance hierarchy on which to
perform the dispatch.

Traits. Traits were proposed as a mechanism for finer-
grained reuse, to solve the reuse problems caused by mix-
ins and multiple inheritance [19, 23, 40]. In particular, the
linearization imposed by mixins can necessitate the defini-
tion of numerous “glue” methods [19]. This design avoids
many problems caused by multiple inheritance since fields
may not be defined in traits.

Unfortunately, this restriction results in other problems.
In particular, non-private accessors in a trait negatively im-
pact information hiding: if a trait needs to use state, this is
encoded using abstract accessor methods, which must then
be implemented by the class composed using the trait. Con-
sequently, it is impossible to define “state” that is private to
a trait—by definition, all classes reusing the trait can access
this state. Additionally, introducing new accessors in a trait
results in a ripple effect, as all client classes must now pro-
vide implementations for these methods [8], even if there are
no other changes.

In contrast, CZ allows a class to multiply inherit other
classes, which may contain state. In particular, a class may
extend other concrete classes, while in trait systems, only
traits may be multiply inherited.

Stateful traits. Stateful traits [8] were designed to address
the aforementioned problems with stateless traits. But, as
previously mentioned, this language does not address the
problem of a correct semantics for object initialization in
the presence of diamonds. Additionally, stateful traits do
not address the information hiding problem, as they have
been designed for maximal code reuse. In this design, state
is hidden by default, but clients can “unhide” it, and may
have to resort to merging variables that are inherited from
multiple traits. While this provides a great deal of flexibility
for trait clients, this design does not allow traits to define
private state.

4. Modular Multiple Dispatch
CZ also supports multiple dispatch, which we and others
believe is more natural and more expressive than single
dispatch [14, 16, 15]. In fact, one common source of bugs
in Java programs occurs when programmers expect static
overloading to behave in a dynamic manner [26]. Multiple
dispatch also avoids the extensibility problem inherent in

the Visitor pattern, as well as the complexity introduced
by manual double dispatch. However, typechecking multiple
dispatch in a modular fashion is very difficult in the presence
of any form of multiple inheritance—precisely because of
the diamond problem.

4.1 The Problem
To see why diamond inheritance causes problems, suppose
we have the original diamond stream hierarchy, and we now
define a multimethod seek in a helper class (supposing that
such functionality did not already exist in the classes in
question):

class StreamHelper {
void seek(Stream s, long pos) {

// default implementation: do nothing
}
void seek(Stream@InputStream is, long pos) {

// seek if pos <= eofPos
}
void seek(Stream@OutputStream os, long pos) {

// if pos > eofPos, fill with zeros
}

}

The declaration seek(Stream@InputStream, long) specifies
that the method specializes seek(Stream, long) for the case
that the first argument dynamically has type InputStream.

Unfortunately, in the context of our diamond hierarchy,
this method definition is ambiguous—what if we perform
the call h.seek(new InputOutputStream(), 1024)? Unfortu-
nately, it is difficult to perform a modular check to determine
this fact. When typechecking the definition of seek(), we
cannot search for a potential subclass of both InputStream
and OutputStream, as this analysis would not be modu-
lar. And, when typechecking InputOutputStream, we can-
not search for multimethods defined on both of its super-
classes, as that check would not be modular, either. We pro-
vide a detailed description of the conditions for modularity
in Sect. 8.1.

It is important to note that this problem is not confined
to multiple (implementation) inheritance—it arises in any
scenario where an object can have multiple dynamic types
on which dispatch is performed. For instance, the problem
appears if dispatch is permitted on Java interfaces, as in
JPred [25], or on traits, as in Fortress [3, 2]. For this reason,
some languages restrict the form of dispatch to the single-
inheritance case; e.g., MultiJava disallows dispatching on
interfaces [16, 17].

4.2 Previous Solutions
There are two main solutions to the problem of modular
typechecking of multiple dispatch in the presence of mul-
tiple inheritance. The first solution is simply to restrict ex-
pressiveness and disallow multiple inheritance across mod-



Language Object initialization Multimethod ambiguity
Eiffel repeat initialization –
C++ special constructor semantics –
Scala no-arg constructors –
Fortress traits n/a disambiguating methods
Stateful traits repeat initialization –
Mixins linearization –
JPred n/a disambiguating methods
Dubious n/a MI restrictions

Table 1. Summary of related work and solutions to the
object initialization and modular multimethod problems.

ule boundaries; this is the approach taken by the “System M”
type system for Dubious [37].

JPred [25] and Fortress [3] take a different approach. The
diamond problem arises in these languages due to multiple
interface inheritance and multiple trait inheritance, respec-
tively. In these languages, the typechecker ensures that mul-
timethods are unambiguous by requiring that the program-
mer always specify a method for the case that an object is a
subtype of two or more incomparable interfaces (or traits).
In our streams example, the programmer would have to pro-
vide a method like the following in the StreamHelper class
(in JPred syntax):

void seek(Stream s, long pos) when
s@InputStream && s@OutputStream

(In Fortress, the method would be specified using intersec-
tion types.) Note that in both languages, this method would
have to be defined for every subset of incomparable types
(that contains at least 2 members), regardless of whether a
type like InputOutputStream will ever be defined. Even if
two types will never have a common subtype,5 the program-
mer must specify a disambiguating method, one that perhaps
throws an exception. Thus, the problem with this approach
is that the programmer is required to write numerous addi-
tional methods—exponential in the number of incomparable
types—some of which may never be called. JPred alleviates
the problem somewhat by providing syntax to specify that a
particular branch should be preferred in the case of an ambi-
guity, but it may not always be possible for programmers to
know in advance which method to mark as preferred.

Note that neither JPred interfaces nor Fortress traits may
contain state and thus the languages do not provide a solution
to the object initialization problem; neither does Dubious,
since it does not contain constructors.

These solutions and the previously described related work
are summarized in Table 1.

5 In Fortress, the programmer may specify that two traits are disjoint, mean-
ing that there will never be a subtype of both. To allow modular typecheck-
ing, this disjoint specification must appear on one of the two trait definitions,
which means that one must have knowledge of the other; consequently this
is not an extensible solution.

4.3 Multimethods in CZ
To solve the problem of modular multiple dispatch, we
use the same solution as for the object initialization prob-
lem: inheritance diamonds are forbidden, and requires is
used as a substitute. An additional constraint is that a
multimethod may only specialize a method in a super-
class, not a required class (i.e., specialization is based
on subclassing, not subtyping). So, in the CZ hierar-
chy of Fig. 2, the typechecker will signal an error,
since the definitions seek(Stream@InputStream, long) and
seek(Stream@OutputStream, long) are not valid specializa-
tions of seek(Stream, long).

Let us suppose for a moment that all classes in Fig. 2
have been defined, except InputOutputStream. Accordingly,
we would re-write the seek methods as follows:

class StreamHelper {
// helper methods
void seekInput(InputStream s, long pos) { ... }
void seekOutput(OutputStream s, long pos) { ... }

// multimethods
void seek(Stream s, long pos) { }
void seek(Stream@ConcreteInputStream is, long pos) {

seekInput(is, pos);
}
void seek(Stream@ConcreteOutputStream os, long pos) {

seekOutput(os, pos);
}

}

(Though these definitions are slightly more verbose than
before, syntactic sugar could be provided, particularly for
mapping multimethods to helper methods.)

Note that the typechecker does not require that a
method be provided for “InputStream && OutputStream,”
unlike JPred and Fortress. If a programmer now de-
fines InputOutputStream, but does not provide a new
specialization for seek, the default implementation of
seek(Stream) will be inherited. An specialization for
InputOutputStream can then be implemented, perhaps one
that calls seekOutput(). Note that this override need not be
defined in StreamHelper directly; the method may be defined
in one of its subclasses.

Here, it is of key importance that subclassing diamonds
are disallowed; because they cannot occur, multimethods can
be easily checked for ambiguities. Subtyping diamonds do
not cause problems, as multimethod specialization is based
on subclassing.

Dispatch semantics. There are two dispatch semantics
that can be used for multimethods: asymmetric or symmet-
ric. In asymmetric dispatching, the order of arguments af-
fects dispatch. In particular, earlier arguments are treated
as more important when selecting between equally specific
methods. This semantics is used in a number of languages,



such as Common Lisp and parasitic methods, among others
[48, 41, 1, 11, 6].

Other languages employ the symmetric dispatch seman-
tics, where all arguments have equal priority in determin-
ing method lookup [15, 45, 17, 36]. Some argue that sym-
metric dispatch is more intuitive and less error-prone than
asymmetric dispatch [17, 36], though this form of dispatch
adversely affects information hiding. In particular, a class
may not hide the existence of a particular method special-
ization; this information is needed to correctly perform am-
biguity checking of subclasses [36]. For this reason, and to
simplify the type system and method lookup rules, CZ mul-
timethod dispatch is asymmetric. However, CZ is compati-
ble with symmetric dispatch; a symmetric-dispatch version
of CZ would simply require additional (modular) checks on
multimethod definitions. Incidentally, method lookup need
not change, as these new ambiguity checks would ensure
the same result, regardless of whether asymmetric lookup
or symmetric lookup were used. Section 8 describes these
issues in more detail.

Fragments of CZ. Note that it would be possible to omit
multimethods from the language and use the CZ design (as
is) for only the object initialization problem. That is, our
solution can be used to solve either the object initialization
problem, the modular multimethod problem, or both.

5. Example: Abstract Syntax Trees
Consider a simple class hierarchy for manipulating abstract
syntax trees (ASTs), such as the one in Fig. 3. The original
hierarchy is the one on the left, which consists of ASTNode,
Num, Var, and Plus. An ASTNode contains a reference point-
ing to its parent node, as indicated in the figure. Each of the
concrete subclasses of ASTNode implements its own version
of the abstract ASTNode.eval() method.

Suppose we wish to add debugging support to our AST,
after the original hierarchy is defined. Each node now ad-
ditionally has a source location field, DebugNode.location.
Debugging support, on the right side of the figure, is es-
sentially a new dimension of AST nodes that has a depen-
dency on ASTNode. We express this using requires. Now,
classes like DebugPlus can multiply inherit from ASTNode
and DebugNode without creating a subclassing diamond.
In particular, DebugPlus does not inherit two copies of the
parent field, because DebugNode is a subtype, but not a sub-
class, of ASTNode. Thus, the no-diamond property allows
fields and multiple inheritance to co-exist gracefully.

In this example, each of these classes has a method eval()
which evaluates that node of the AST, as in the code in Fig. 4.
Suppose we intend DebugNode to act as a generic wrap-
per class for each of the subclasses of ASTNode. This can
be implemented by using a dynamically-dispatched super
call of the form ASTNode.super.eval() after performing the
debug-specific functionality (in this case, printing the node’s
string representation). The prefix ASTNode.super means

class DebugNode requires ASTNode {
ASTNode eval() {

print(this.toString());

// dynamic super call
return ASTNode.super.eval();

}
}
class DebugPlus extends DebugNode, Plus {

ASTNode eval() {
// ordinary super call
return DebugNode.super.eval();

}
}

Figure 4. Implementing a mixin-like debug class using
dynamically-dispatched super calls, and performing multi-
method dispatch on the ASTNode hierarchy.

“find the parent class of the dynamic class of this along the
ASTNode path.” At runtime, when eval() is called on an in-
stance of DebugPlus, the chain of calls proceeds as follows:
DebugPlus.eval()→ DebugNode.eval()→ Plus.eval(). If the
dynamically-dispatched super call behaved as an ordinary
super call, it would fail, because DebugNode has no super-
class.

Each of the DebugNode subclasses implements its own
eval() method that calls DebugNode.eval() with an ordinary
super call. (This could be omitted if the language linearized
method overriding based on the order of inheritance declara-
tions, such as in Scala traits.) Dynamic super calls are a gen-
eralization of ordinary super calls, when the qualifier class is
a required class.

Adding multimethods. Suppose that after we have de-
fined these classes, we wish to add a new method that op-
erates over the AST. For instance, we may want to check
that variables are declared before they are used (assuming a
variable declaration statement). Since CZ has multimethods,
such a method defCheck() could be defined in a helper class,
rather than in the classes of the original hierarchy:

class DefChecker {
void defCheck(ASTNode n) { ... }
void defCheck(ASTNode@Var v) { ... }
void defCheck(ASTNode@Plus p) { ... }
void defCheck(ASTNode@Num n) { ... }

}

Note that the programmer would only have to define cases
for ASTNode, Num, Var and Plus; she need not specify what
method should be called when an object has a combination
of these types—such a situation cannot occur (as there are
no diamonds).



requires

+ eval() : ASTNode

ASTNode
# parent : ASTNode

+ eval() : ASTNode

DebugNode
# location : SourceRef

+ eval() : ASTNode
Num

+ eval() : ASTNode
Var

+ eval() : ASTNode
Plus

+ eval() : ASTNode
DebugPlus

+ eval() : ASTNode
DebugVar

+ eval() : ASTNode
DebugNum

return 
DebugNode.super.eval()

print(this.toString();
return ASTNode.super.eval()

Figure 3. The AST node example in CZ. Abstract classes and abstract methods are set in italic.

Discussion. The examples illustrate that subtyping allows
substitutability; subclassing, in addition to providing inher-
itance, defines semantic alternatives that may not overlap
(such as Num, Var and Plus in the example above). Because
they do not overlap, we can safely perform an unambiguous
“case” analysis on them—that is, multimethod dispatch. In
other words, dispatch in our system is analogous to case-
analyzing datatypes in functional programming (e.g. ML,
Haskell).

Alternative designs. Traits could be used to express this
example, but as previously mentioned (Sect. 3.2), the lack
of state results in an information hiding problem with acces-
sors. Also, as we have noted, stateful traits do not address
the object initialization problem.

Mixins could express some aspects of the class hierarchy
for this example, but as previously mentioned, subclassing—
or even subtyping—cannot be specified among (standard-
style) mixins [12, 24, 4]. For this reason, mixins do not
integrate well with multimethods. For details on this issue,
see [30].

Using Java-style single inheritance would be unwieldy.
A forwarding pattern would have to be used, along with the
definition of at least four new interfaces [30]. Additionally,
accessors would have to be public, since they would have to
be defined in an interface (the only way to achieve any form
of multiple inheritance in Java-like languages). Finally, the
Visitor design pattern would have to be used in order to allow
new operations to be defined.

6. CZ Design
In this section, we give informal details of the typechecking
rules in CZ, and provide an intuition as to why typechecking
is modular. In Sect. 8 we formalize CZ and provide a detailed
argument showing its modularity.

6.1 Multiple Inheritance
CZ places the following constraints on class definitions:

C1. If a class C extends D1 and D2 then there must not exist
some E, other than Object, such that both D1 and D2 are
subclasses of E (the no-diamond property).

C2. If class C extends D1 and D2 and the unspecialized
method m is defined or inherited by both D1 and D2 then
C must also define the unspecialized method m. Also, if
method m with specializer B is defined or inherited by
both D1 and D2, then C must also define either (1) m
with specializer B′, where B is a subclass of B′, or (2) an
unspecialized method m.

Additionally, the calculus assumes an elaboration phase that
translates method names to qualified names, using the name
of the class where the method was first defined; conse-
quently, methods have a unique point of introduction. That
is, in the calculus, two classes only share a method name if
it exists in a common superclass or common required class.
This convention prevents a name clash if two methods in un-
related classes A and B coincidentally have the same name
and a third class inherits from both A and B.6 (Of course,
an implementation of the language would have to provide a
syntactic way for disambiguating methods that accidentally
have the same name; this could be achieved through rename
directives, e.g., Eiffel [32], or by using qualified names, e.g.,
C# interfaces and C++.)

We have already described the reason for condition C1,
the no-diamond property. We make a special case for the
class Object—the root of the inheritance hierarchy, since ev-
ery class automatically extends it. (Otherwise, a class could
never extend two unrelated classes—the existence of Object
would create a diamond.7) Note that this does not result in
the object initialization problem, because Object has only a
no-argument constructor. Also, this condition does not pre-
clude a class from inheriting from two concrete classes if
this does not form a diamond.

Condition C2 ensures that if a class C inherits two iden-
tical method definitions, either specialized or unspecialized,
this will not lead to an ambiguity; in such a case, C must
provide an overriding definition.

6 Incidentally, this is not the convention used in Java interfaces, but is that
of C#.
7 An alternative design would be to make every abstract class implicitly
require Object and every concrete class implicitly extend Object. The prob-
lem with this design is that it would prevent a class from extending two
concrete classes, as a diamond with Object at the root would result.



6.2 Multiple Dispatch
CZ allows methods to be specialized on a subclass of the
first argument’s class type. Any unspecialized method (i.e.,
an ordinary method) defined or inherited by a class C may be
specialized within C, provided the method’s first argument
type is not Object. In general, typechecking multimethods
has two components: exhaustiveness checking (i.e., the pro-
vided cases provide full coverage of the dispatch hierarchy)
and ambiguity checking (i.e., when executing a given method
call, there is a unique most specific applicable method).

Since the core calculus of CZ does not include abstract
methods, exhaustiveness is automatically handled; we need
only ensure there are no ambiguities. (Abstract methods
are orthogonal to our considerations, as they are adequately
handled by previous work [37, 16, 35].) We adapt previous
techniques for ambiguity checking [37, 16, 35]:

M1. A method D m(A@B x, D x) may only be defined if in
class C if all of the following hold:

1. A 6= Object
2. B 6= A
3. B is a subclass of A
4. a method D m(A, D) is defined or inherited by C.

These conditions, together with with C1 and C2, ensure
the absence of ambiguity. In particular, since B must be a
strict subclass of A, condition C1 ensures that if method
m(A@B′) is defined or inherited by C, then either B � B′

or B′ � B (since A 6= Object and inheritance diamonds
are disallowed). Condition C2 ensures that if B = B′, there
exists a disambiguating definition m(A@B′′) within class
C, where B � B′′. Together, these properties ensure that
if a program typechecks, a unique most-specific applicable
method always exists.

Previous work either disallowed inheritance across mod-
ule boundaries [37] or did not permit interfaces to be special-
izers [16]. In CZ, we can remove each of these restrictions,
due to the absence of inheritance diamonds.

In Sect. 8, we describe a generalization of multimethods
to the n-argument case and describe why this generalization
does not introduce new typechecking issues.

6.3 Dynamically-Dispatched Super Calls
As illustrated in Sect. 5, CZ includes dynamically-
dispatched super calls. When A requires B (i.e., A is act-
ing as a mixin extension of B), then within A, a call of the
form B.super is dynamically resolved, similar to super calls
in traits. Other super calls (i.e., those where the qualifier is a
parent class) have the same semantics as that of Java.

6.4 Discussion
Extensions. External methods (also known as open
classes), could also be added to CZ, without sacrificing mod-
ular typechecking. External methods are more general than
multimethods, since they allow new classes to override an

existing external method. For details on the typechecking is-
sues that arise, see our previous work [30].

It would also be possible to combine our solution with
existing techniques for dealing with the object initializa-
tion and modular multiple dispatch problems. A program-
mer could specify that a class C, whose constructor takes no
arguments, may be the root of a diamond hierarchy. Then,
we would use the Scala solution for ensuring that C’s con-
structor is called only once. To solve the multiple dispatch
problem, if methods m(B) and m(B′) specialize m(C), the
typechecker would ensure that m contained a disambiguat-
ing definition for (B∧ B′)—the JPred and Fortress solutions.

Finally, the language could include syntactic sugar to
ease the definition of concrete classes. If C requires B, and
both C and B have no-argument constructors, the compiler
could automatically generate a class C$concrete that extends
both C and B; programmers could then more easily define
multimethods that dispatch on C$concrete.

Encapsulation and the diamond problem. As noted by
Snyder, there are two possible ways to view inheritance:
as an internal design decision chosen for convenience, or
as a public declaration that a subclass is specializing its
superclass, thereby adhering to its semantics [47].

Though Snyder believes that it can be useful to use in-
heritance without it being part of the external interface of
a class, we argue that the second definition of inheritance
is more appropriate. In fact, if inheritance is being used
merely out of convenience (e.g., Stack extending Vector in
the Java standard library), then it is very likely that compo-
sition is a more appropriate design [10]. For similar reasons,
we do not believe a language should allow inheritance with-
out subtyping—e.g., C++ private inheritance—as this can al-
ways be implemented using a helper class whose visibility is
restricted using the language’s module system.

Nevertheless, if one takes the view that inheritance
choices should not be visible to subclasses, a form of the di-
amond problem can arise in CZ. In particular, suppose class
D extends B and C, C extends A, and B extends Object—a
valid hierarchy (recall that condition C1 makes a special ex-
ception for diamonds involving Object). Now suppose that B
is changed to extend A, and the maintainer of B is unaware
that class D exists. Now A, B and C typecheck, but D does
not. Thus, the use of inheritance can invalidate subclasses,
which violates Snyder’s view of encapsulation.

This situation highlights the fact that, in general, requires
should be favored over extends if a class is intended to be
reused.

7. Real-World Examples
In this section, we present real-world examples (in both C++
and Java) that suggest that multiple inheritance, and diamond
inheritance in particular, can be useful for code reuse. We
also describe how these examples can be expressed in CZ.



7.1 C++ Examples
We examined several open-source C++ applications in a
variety of domains and found many instances of virtual
inheritance and inheritance diamonds. Here we describe
inheritance diamonds in two applications: Audacity8 and
Guikachu.9

Audacity. Audacity is a cross-platform application for
recording and editing sounds. One of its main storage ab-
stractions is the class BlockedSequence (not shown), which
represents an array of audio samples, supporting operations
such as cut and paste. A BlockedSequence is composed of
smaller chunks; these are objects of type SeqBlock, depicted
in Fig. 5 (a). One subclass of SeqBlock is SeqDataFileBlock,
which stores the block data on disk. One superclass of
SeqDataFileBlock is ManagedFile, an abstraction for tempo-
rary files that are de-allocated based on a reference-counting
scheme. Since both ManagedFile and SeqBlock inherit from
Storable (to support serialization), this forms a diamond with
Storable at the top.

This particular diamond can be easily re-written in CZ
(Fig. 5 (b)), since the sides of the diamond (SeqBlock and
ManagedFile) are already abstract classes. (Compare to the
example in Fig. 2, where new concrete classes had to be de-
fined for the sides of the diamond.) Here, we simply change
the top two virtual inheritance edges to requires edges, and
make SeqDataFileBlock inherit from Storable directly. This
may even be a preferable abstraction; while in the original
hierarchy SeqDataFileBlock is serializable by virtue of the
fact that SeqBlock is serializable, in the new hierarchy we
are making this relationship explicit.

Guikachu. Guikachu is a graphical resource editor for
the GNU PalmOS SDK. It allows programmers to graph-
ically manipulate GUI elements for a Palm applica-
tion in the GNOME desktop environment. In this ap-
plication, we found 10 examples of diamonds that in-
cluded the classes CanvasItem, WidgetCanvasItem, and
ResizeableCanvasItem. CanvasItem is an abstract base
class that represents items that can be placed onto a
canvas, while objects of type WidgetCanvasItem and
ResizeableCanvasItem are a type of widget or are resizeable,
respectively.

Figure 6(a) shows two of these 10 diamonds, formed
by TextFieldCanvasItem and PopupTriggerCanvasItem, re-
spectively. The hierarchy was likely designed this way be-
cause there exist GUI elements that have only one of
the two properties. For instance, GraffitiCanvasItem and
LabelCanvasItem (not shown) are not resizeable, but they are
widgets. In contrast, the class FormCanvasItem (not shown)
is resizeable, but is not a widget.

In this application, we also observed the use of the
C++ virtual inheritance initializer invocation mecha-

8 http://audacity.sourceforge.net/
9 http://cactus.rulez.org/projects/guikachu/

nism: TextFieldCanvasItem (for instance) directly calls
the initializer of CanvasItem, its grandparent. As previ-
ously described, when initializing TextFieldCanvasItem,
the initializer calls from WidgetCanvasItem and
ResizeableCanvasItem to CanvasItem are ignored. In
this application, the initializers happen to all perform
the same operation, but this invocation semantics could
introduce subtle bugs as the application evolves.

The corresponding CZ class hierarchy is displayed in
Fig. 6 (b); note its similarity to that of Fig. 5 (b). Essen-
tially, the virtual inheritance is replaced with requires and
each of the classes at the bottom of the diamond inherit from
all three of WidgetCanvasItem, ResizeableCanvasItem, and
CanvasItem. The CZ design has the advantage that construc-
tor calls do not occur more than one level up the hierarchy,
and no constructor calls are ignored.

This example illustrates how a program could be trans-
lated from C++-style multiple inheritance to CZ-style. In
particular, virtual inheritance would be replaced by requires,
and new concrete classes would be defined as necessary
(changing instantiations of the now-abstract class to instanti-
ations of the new concrete class). Note that constructor calls
can be easily generated for the new concrete classes, as C++
requires a call from the bottom of the diamond to the top of
the diamond when virtual inheritance is used (such a con-
structor call would be necessary for the new concrete class,
as it would directly extend the class at the top of the dia-
mond).

Discussion. It would be interesting to extend the C++
study and perform a more systematic study of the nature of
inheritance diamonds, quantifying how often new abstract
classes would have to be defined (i.e., how often concrete
classes appear on the “sides” of the diamond). One could
also determine how often the initializer problem occurs in
real code.

However, note that the multimethod problem will always
arise in a multiple inheritance situation, even if a program-
mer never actually creates an inheritance diamond, and (as
noted in Section 4) even if a language includes the more be-
nign feature of multiple interface inheritance (e.g., Java-like
languages).

7.2 Java Example: Eclipse JDT
The Eclipse JDT (Java Development Tools) is an example
of where multiple inheritance could be useful for Java pro-
grams. In the JDT, every AST node contains structural prop-
erties. A node’s structural properties allow uniform access
to its components. For example, DoStatement has 2 fields
of type StructuralPropertyDescriptor: EXPRESSION_PROP-
ERTY and BODY_PROPERTY. To get the expression
property of a DoStatement object, the programmer
may call ds.getExpression() or ds.getStructuralProperty(
DoStatement.EXPRESSION_ PROPERTY). Structural prop-

http://audacity.sourceforge.net/
http://cactus.rulez.org/projects/guikachu/
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Figure 6. Two inheritance diamonds in the Guikachu application (a) and re-written in CZ (b). Abstract classes are set in italic.

erty descriptors are often used to specify how AST nodes
change when a refactoring is performed.

Through inspection of the JDT code, we found
that there was a great deal of duplication among the
code for getting or setting a node property using the
structural property descriptors. For example, 19 AST
classes (e.g., AssertStatement and ForStatement) have
getExpression/setExpression properties. As a result, in the
method internalGetSetChildProperty (an abstract method of
ASTNode), there are 19 duplications of the following code:

if (property == EXPRESSION_PROPERTY) {
if (get) {

return getExpression();
} else {

setExpression((Expression) child);
return null;

}
} else if (property == BODY_PROPERTY) {

... // code for body property
}

}

Additionally, there are duplicate, identical definitions of
the EXPRESSION_PROPERTY field. Without a form of
multiple inheritance, however, it is difficult to refac-
tor this code into a common location—DoStatement,
for example, already has the superclass Statement. With
multiple inheritance, the programmer could create an
abstract helper class ExprPropertyHelper that requires

ASTNode. This new class would contain the field def-
inition and an override of internalGetSetChildProperty.
DoStatement would then inherit from both Statement and
ExprPropertyHelper and would have the following body for
internalGetSetChildProperty:

if (property == BODY_PROPERTY) {
... // code for body property

} else {
return ExprPropertyHelper.super.

internalGetSetChildProperty(property, get, child);
}

Additionally, this is a scenario where multiple dispatch
would be beneficial. The framework defines various visitors
for traversing an AST; these could be omitted in favor of
multimethods, which are more extensible.

Overall, our real-world examples suggest that multiple in-
heritance can be useful, and that even diamond inheritance
is used in practice. We have shown that the inheritance dia-
monds can be easily translated to CZ and that the resulting
designs offer some benefits over the original ones. In par-
ticular, CZ avoids the problem of ignored constructor calls
in C++, while providing more flexible code reuse than with
single inheritance.

8. Formal System
In this section, we describe the formalization of CZ, which
is based on Featherweight Java (FJ) [28]. We use the same



conventions as FJ; D is shorthand for the (possibly empty)
list D1, . . . , Dn, which may be indexed by Di.

The grammar of CZ is presented in Fig. 7. Modifica-
tions to FJ are highlighted. Class declarations may extend or
require a list of classes. There is also a new syntactic form
for multimethods; such methods include a specializer on the
first argument type.

We relax the FJ convention that a class may not define
two methods with the same name; such a case is permitted
as long as one method or both methods have specializers
(which must be distinct). The type of all other arguments
and the return type must remain the same.

To simplify the formal system, we assume that all meth-
ods have at least one argument. A dummy object can be used
to simulate a no-argument method.

To avoid syntax for resolving different superclass con-
structors, all fields, including those inherited from super-
classes, must be initialized in the constructor.

Aside from dynamically-dispatched super calls, and the
removal of casts (they are orthogonal to our goals), CZ
expression forms are identical to those of FJ. For simplicity,
we have not modeled ordinary super calls in our calculus,
as this has been considered by others (e.g., [24, 38]) and is
orthogonal to the issues we are considering. Therefore, the
class qualifier of a super call must be a required class.

We have added a new subclass (‘�’) judgement (Fig. 8),
which is the reflexive, transitive closure of extends. The sub-
type judgement (<:) is extended to include the requires re-
lationship. Subclassing implies subtyping, and if class A
requires B then A <: B, but A � B. In CZ, the requires
relation is not transitive; subclasses must either require or
extend the required class, which is enforced by the type-
checking rules. Subtyping allows A be used in place of B,
which is in contrast to Scala; Scala only allows such a sub-
stitution for the this reference within a class.

The auxiliary judgements for typechecking appear after
the typechecking and evaluation rules, in Fig. 12. We will
describe each of these when describing the rules that use
them.

Static Semantics. The rules for typechecking expressions
are in Fig. 9. The rule for method invocations, T-INVK, is the
same as that in FJ. However, the auxiliary judgement it uses,
mtype, is different.

The CZ judgement mtype (Fig. 12) has an additional rule
as compared to FJ; it performs a lookup of methods from
required classes, in the case that the method does not exist
in the class itself or superclasses. This judgement considers
only unspecialized methods.

The rule T-SUPER-INVK checks the dynamically-
dispatched super call described in Sect. 6. Essentially, for a
call of the form this.B.super.m(e), where this : C0, instead
of looking up mtype(m, C0), we look up mtype(m, B),
where B is a required class of C0.

The rule T-NEW has one additional premise as compared
to FJ: the requires clause must be empty. This ensures that
the class is concrete and can be instantiated, which in turn
ensures the soundness of the subtyping relation induced by
requires.

Rules for typechecking methods are displayed in Fig. 10.
The rule T-METHOD checks unspecialized methods, and uses
the override auxiliary judgement (which is unchanged from
FJ). In this rule, we check that method m is a valid override
of the same (unspecialized) method in all superclasses and
required classes.

T-MULTI-METHOD checks specialized methods. The first
two premises are the same as that of T-METHOD. Premises
(3), (4) and (5) check conditions 1, 2, and 3, respectively,
of constraint M1. Premise (6) checks condition 4 of M1;
it ensures C defines or inherits an unspecialized method
with type (A, B) → B, where A is the static type being
specialized.

The T-CLASS rule (Fig. 11) checks class definitions.
Premises (1–3) are straightforward generalizations of the
corresponding premises in FJ. Premises (4) and (5) ensure
that requires is propagated down each level of the inheritance
hierarchy; the extending class must either extend or require
its parents’ required classes. Premise (6) specifies that a sub-
classing diamond cannot occur, except for the case of Object
(condition C1). Finally, premise (7) enforces condition C2,
ensuring that if C inherits two methods m with the same first
argument B′ (or two unspecialized methods m), then C pro-
vides an overriding definition for m. This premise uses the
methodDef (m, Di, B′) auxiliary judgement: a derivation of
methodDef exists if Di defines or inherits a method with spe-
cializer B′ or first argument type B′. This premise, as well as
the methodDef judgement, uses the notation 〈A@〉 to spec-
ify either a specialized or unspecialized method (i.e., the A@
part is optional).

Dynamic Semantics. The evaluation rules and auxil-
iary judgements are presented in Fig. 13. Most of the
rules are similar to FJ, with the exception of E-INVK and
E-SUPER-INVK. E-INVK passes the dynamic type of the
method’s first argument as an additional argument to mbody,
which we describe below. E-SUPER-INVK uses the auxiliary
judgement super(C, D), which finds the first superclass of
the class C that is also a subclass of D. Then, mbody is called
on the result of the super call.

The main changes to the dynamic semantics are encoded
in the auxiliary judgements mbody, dispatch, and match. The
mbody judgement has one additional argument as compared
with FJ, to (potentially) dispatch on the method’s first ar-
gument. This judgement simply extracts the arguments and
method body from the result of the dispatch judgement,
which contains the actual dispatch logic.

Method dispatch is performed in two steps. The first
dispatch rule uses the matchArg judgement to search for a
method defined in C that is applicable for D, the dynamic



Declarations L ::= class C extends C requires C { C f ; K M }

Constructors K ::= C(C f ) { this. f = f ; }

Methods M ::= C0 m(C x) { return e; } | C0 m(C@C′ x, C x) { return e; }

Expressions e ::= x | e. f | e.m(e) | e.C.super.m(e) | new C(e)

Figure 7. CZ grammar

Subclassing C � D

C � C
C � D D � E

C � E
CT(C) = class C extends D1, . . . , Dn · · · { . . . }

C � Di

Subtyping C <: D

C � D
C <: D

C <: D D <: E
C <: E

CT(C) = class C extends D requires E1, . . . , En { . . . }

C <: Ei

Figure 8. Subclassing (�) and subtyping (<:) judgement

Γ ` e : C

(T-VAR)

Γ ` x : Γ(x)

(T-FIELD)
Γ ` e0 : C0 C0 <: D fields(D) = C f

Γ ` e0. fi : Ci

(T-INVK)
Γ ` e0 : C0 mtype(m, C0) = D → C

Γ ` e : C C <: D
Γ ` e0.m(e) : C

(T-SUPER-INVK)
Γ ` e0 : C0 class C0 extends D0 requires B, E
mtype(m, B) = D → C Γ ` e : C C <: D

Γ ` e0.B.super.m(e) : C

(T-NEW)
fields(C) = D f Γ ` e : C C <: D class C requires •

Γ ` new C(e) : C

Figure 9. Expression typing

type of the method’s first argument. This latter judgement
considers both specialized and unspecialized methods (via
the 〈B@〉 notation). If such a definition exists, it is returned;
otherwise, a set of methods ME is composed by calling
dispatch on each of C’s superclasses. Then, the unique most
specific method that is applicable for argument D is selected.
Note the asymmetric dispatch semantics; if an appropriate
method does not exist in C, its superclasses are searched
before dispatching on the argument type.

Constructors. As in FJ, CZ does not contain state, and
thus constructor definitions are trivial. However, a full imple-
mentation would have to ensure that when C extends A, B
and A requires B, when creating a C object, its B-part must
be initialized before its A-part. Otherwise, this could result
in fields being accessed before they exist, since A is permit-
ted to access B’s fields.

Generalizations. To generalize multimethod dispatch to n
arguments, in the static semantics, we would extend premise
(7) of T-CLASS, which corresponds to condition C2. In par-
ticular, this premise would ensure that if C inherits two
method definitions that have identical specializer lists (or
argument types), then an overriding definition exists in C.
In particular, the quantifier ∀B′ would become ∀B′ in this
premise.

For the dynamic semantics, we would change dispatch
and matchArg to take a list of dynamic types of the ob-
jects passed to the method in question. The latter judgement
would then select the unique most specific method such that
each of its specializers (or argument types, if there is no spe-
cializer) is a supertype of the corresponding dynamic type.
This could be implemented by first creating a candidate list
of all applicable methods, then selecting the most specific
one.



M ok in C

Ê x : B, this : C ` e0 : E0
Ë E0 <: B Ì class C extends D requires E

Í ∀i . override(m, Di , B→ B) Î ∀i. override(m, Ei, B→ B)

B m(B x) { return e0; } ok in C
(T-METHOD)

Ê x : B′, x : B, this : C ` e0 : E0
Ë E0 <: B

Ì A 6= Object Í B0 6= A Î B0 � A Ï mtype(m, C) = (A, B)→ B

B m(A@B0 x, B x) { return e0; } ok in C
(T-MULTI-METHOD)

Figure 10. Specialized and unspecialized method typing

Declaration Typing L ok

Ê ∀i. fields(Di) = Fi gi
Ë K = C( Fi gi

i∈1..n , C f ){ this.gi = gi
i∈1..n ; this. f = f }

Ì M ok in C Í ∀i. class Di requires E′, implies ∃k. Dk � E′ or ∃k. Ek � E′

Î ∀i. class Ei requires E′′, implies ∃k. Dk � E′′ or ∃k. Ek � E′′

Ï ∀i. ∀j 6= i.@D′ 6= Object. Di � D′ and Dj � D′

Ð ∀m. ∀B′.
`
∃i. ∃j 6= i. methodDef (m, Di, B′) and methodDef (m, Dj, B′)

´
, implies

∃B′′. B′ � B′′ and B0 m(〈A@〉B′′x, B x) ∈ M

class C extends D requires E { C f ; K M } ok
(T-CLASS)

Figure 11. Class typing

We observe from the form of these judgements (dispatch
and matchArg) that there could be two ways in which more
than one method applies: (1) within a single argument posi-
tion, more than one method applies and none is more specific
than the others, (2) one method is more specific at one argu-
ment position and another method is more specific at some
other argument position. Note that, in the absence of appro-
priate typechecking, either situation can arise, regardless of
whether dispatch is performed on n arguments or just two ar-
guments. Premise (6) of T-MULTI-METHOD ensures that there
exists at least one method in the candidate list.

CZ’s static semantics—in particular, conditions C1 and
C2—ensure that the first situation cannot arise. As a conse-
quence of condition C1 (the no-diamond restriction), for a
particular argument position k, all specializer types in the
candidate method list are mutually comparable (via sub-
classing). That is, if, at argument position k, method mi has
specializer Ci and mj has specializer Cj, then either Ci � Cj
or Cj � Ci (for i 6= j). This is because both types must be
superclasses of Dk (the dynamic type at position k) and they
also must both be subtypes of Ck, the static type at position
k. Since Ck cannot be Object, Ci and Cj must be comparable
types.

C2 ensures that there exists an argument position k such
that Ci 6= Cj. We observe that two methods in the candidate
list could only have identical specializer types (or argument
types) if class C inherited two such methods (as there is a

syntactic restriction against such a definition directly in C).
But, C2 ensures that if such a situation were to occur, that
C would have an overriding definition. Therefore, the first
dispatch rule would apply and superclasses would not be
considered.

Finally, situation (2) cannot occur, due our assymmetric
dispatch semantics. To change to symmetric dispatch (de-
scribed in Sect. 4.3), we need only add an additional premise
to T-CLASS. This new premise would ensure that there is no
combination of receiver and argument tuples such that more
than one method would apply, using the same modular check
implemented in, for instance, MultiJava and EML [17, 35].
Note that the dynamic semantics would not need to change,
since this new premise would ensure that asymmetric and
symmetric dispatch produce the same result.

8.1 Modularity
Here, we describe the conditions under which a class-based
system is modular when there is no explicit module system.
We argue informally that typechecking in CZ is modular
based on the structure of the typechecking rules. (The other
languages we have mentioned also perform modular type-
checking by this definition.)

Conditions for modular typechecking.
1. Checking a class signature C with methods M should

only require examining: (a) signatures of methods tran-



fields(C) = C f

fields(Object) = •

class C extends D1, . . . , Dn requires E { C f ; K M } ∀i . fields( Di ) = Bi gi

fields(C) = Bi gi
i∈1..n , C f

mtype(m, C) = D → D

class C · · · { C f ; K M }
B m(B x) { return e; } ∈ M

mtype(m, C) = B→ B

class C extends D requires E { C f ; K M }

∃k . mtype(m, Dk ) = B→ B

mtype(m, C) = B→ B

class C extends D requires E { C f ; K M }

∃k. mtype(m, Ek) = B→ B

mtype(m, C) = B→ B

methodDef (m, C, B)

class C · · · { C f ; K M }
B0 m(〈B′@〉B x, B x) { return e; } ∈ M

methodDef (m, C, B)

class C extends D · · · { C f ; K M }
B0 m(〈B′@〉B x, B x) { return e; } /∈ M

∃k. methodDef (m, Dk, B)
methodDef (m, C, B)

override(m, D, C → C0)

mtype(m, D) = D → D0 implies C = D and C0 = D0

override(m, D, C → C0)

Figure 12. CZ typechecking auxiliary judgements

sitively overridden or specialized in M, (b) signatures of
methods transitively overridden or specialized by C’s in-
herited methods, (c) class declarations of C’s supertypes.

2. Checking the definition of a particular method m (possi-
bly specialized with class C) should only require exam-
ining: (a) the declarations of C and its supertypes, (b) the
signature of the method that m specializes, and (c) the
signatures of methods called by m.

By inspection, checking a class definition C obeys condi-
tion 1. Each premise examines only superclasses or required
classes, and there is, for example, no search for multimeth-
ods with first argument type C.

Checking a method definition m is also modular. If m
is an unspecialized method, the only generalization to the
typechecking rule is additional override checks, which are
modular. On the other hand, when a specialized method
is checked, we simply ensure that the specializer has the
appropriate relationship to its static type (which may not be
Object), and call mtype(m, C). Since this judgement only
searches up the subtype hierarchy, it is modular.

8.2 Type Safety
We prove type safety using the standard progress and preser-
vation theorems, with a slightly stronger progress theorem
than that of FJ, due to the omission of casts. Note that in our
system, type safety implies that all method calls are unam-

biguous, as the dispatch and match judgements require that
there be a unique most-applicable method. We describe be-
low a brief outline of the proof of type safety and refer the
reader to [31] for further details.

Theorem 8.1 (Preservation). If Γ ` e : C and e 7−→ e′,
then Γ ` e′ : C′ for some C′ <: C.

The proof of preservation is relatively straightforward and
is similar to the proof of FJ. We make use of an auxiliary
lemma (not shown) that proves that mtype returns a unique
value. The proof of this lemma makes use of the convention
that method introductions are unique.

Theorem 8.2 (Progress). If · ` e : C then either e is a value
or there is an e′ with e 7−→ e′.

The proof of progress is slightly more complex. The proof
requires the following lemma:

Lemma 8.1. If mtype(m, C) = (B0, B) → B and
Γ ` new C(e) : C and B′ � B0 then dispatch(m, C, B′) =
M, for some M.

However, unlike in FJ, we cannot prove this lemma by in-
duction on the derivation of mtype, since for the inductive
step, we do not have a derivation Γ ` new Dk(e) : Dk. In-
stead, we make use of two auxiliary lemmas:



Evaluation e 7−→ e′

(E-FIELD)
fields(C) = B f

(new C(e)). fi 7−→ ei

(E-INVK)
mbody(m, C, D ) = (x, x).e0

(new C(e)).m
`

new D(e′) , d
´
7−→ˆ

new C(e)/this, new D(e′)/x , d/x
˜

e0

(E-SUPER-INVK)
super(C, E) = C′ mbody(m, C′, D) = (x, x).e0

(new C(e)).E.super.m
`
new D(e′), d

´
7−→ˆ

new C(e)/this, new D(e′)/x, d/x
˜

e0

e0 7−→ e′0
e0. f 7−→ e′0. f

e0 7−→ e′0
e0.m(e) 7−→ e′0.m(e)

e0 7−→ e′0
e0.C.super.m(e) 7−→ e′0.C.super.m(e)

ei 7−→ e′i
e0.m(. . . , ei, . . . ) 7−→

e0.m(. . . , e′i , . . . )

ei 7−→ e′i
e0.C.super.m(. . . , ei, . . . ) 7−→

e0.C.super.m(. . . , e′i , . . . )

ei 7−→ e′i
new C(. . . , ei, . . . ) 7−→

new C(. . . , e′i , . . . )

Auxilliary Judgements

mbody(m, C, D ) = x.e super(C, D) = E

dispatch(m, C, D) =
B0 m(〈B@〉B′ x, B x) { return e; }

mbody(m, C, D ) = x.e

class C extends E E � D
super(C, D) = E

@E′ � D. class C extends E′

C extends B ∃k. super(C, Bk) = E
super(C, D) = E

dispatch(m, C, D) = M

class C · · · { C f ; K M }
matchArg(m, D, M) = M′

dispatch(m, C, D) = M′

class C extends E requires F { C f ; K M } @M′. matchArg(m, D, M) = M′

ME = {Mi | dispatch(m, Ei, D) = Mi} ∃ unique M′′. matchArg(m, D, ME) = M′′

dispatch(m, C, D) = M′′

matchArg(m, D, M) = M

M′ = B0 m(〈B@〉D x, B x) { return e; }
M′ ∈ M

matchArg(m, D, M) = M′

B0 m(〈B@〉D x, B x) /∈ M class D extends E
∃ unique (k, M′). matchArg(m, Ek, M) = M′

matchArg(m, D, M) = M′

Figure 13. Evaluation rules and auxiliary judgements

Lemma 8.2. If D :: mtype(m, C) = (B0, B) → B and
D does not contain the rule MTYPE3 and B′ � B0, then
dispatch(m, C, B′) = M, for some M.

Lemma 8.3. If Γ ` new C(e) : C and C <: D and
D :: mtype(m, D) = B → B, then there exist D′ and D′

such that C � D′ and D′ :: mtype(m, D′) = B → B does
not contain the rule MTYPE3.

Lemma 8.2 is needed because it is the rule MTYPE3 that
could result in mbody not being defined—it is the only rule
that has no dispatch counterpart. We use Lemma 8.3 to
produce such an mtype derivation.

With these lemmas, the rest of the proof of progress is
straightforward.

9. Related Work
Here we describe related work that was not previously dis-
cussed in Sections 2, 3.2, and 4.2.

As mentioned in Sect. 4.2, JPred [25] and Fortress [3]
perform modular multimethod typechecking by requiring
that programmers provide disambiguating methods, some of
which may never be called. However, we observe that the
JPred and Fortress dispatch semantics may be more expres-
sive than that of CZ. In CZ, in the class hierarchy Fig. 2, the
abstract class InputStream may not be used as a specializer



for Stream, because it is not a subclass of Stream. In con-
trast, if this hierarchy were expressed in e.g. Fortress a mul-
timethod defined on Stream could be specialized for either
InputStream or OutputStream. Note, however, that program-
mers can achieve a similar effect in CZ by having concrete
classes call helper methods (which may themselves perform
multiple dispatch) defined on the abstract classes.

Cecil [14, 15] also provides both multiple inheritance
and multimethod dispatch, but it does not include construc-
tors (and therefore provides ordinary dispatch semantics for
methods acting as constructors), and it performs whole-
program typechecking.

Like JPred, the language Half & Half [6] provides multi-
method dispatch on Java interfaces. In this language, if there
exist specialized method implementations for two incompa-
rable interfaces A and B, the visibility of one of the two in-
terfaces must be package-private. Like System M, this effec-
tively disallows multiple (interface) inheritance across mod-
ule boundaries (where a package is a module). Half & Half
does not consider the problem of multiple inheritance with
state.

Pirkelbauer et al have considered the problem of integrat-
ing multimethods into C++, which is especially difficult due
to existing rules for overload resolution [42]. However, this
proposal is not modular; because of the potential for inheri-
tance diamonds, the design requires link-time typechecking.

It is worth noting that multimethods cannot be simulated
with C# 3.0 “extension methods” or partial classes [34].
The former, extension methods, are merely syntactic sugar
and cannot be overridden with a more specific type for the
receiver. Partial classes, on the other hand, are simple a
compile-time mechanism for splitting a class’s definition
across multiple compilation units. In particular, compared to
multimethods, they have the following limitations: 1) they
cannot span assemblies (so if the AST node classes are in a
library, some other mechanism would be needed, such as the
Visitor pattern); 2) partial classes may not be used to perform
dispatch on interfaces, in contrast to multimethods; and 3)
typechecking each part of a partial class is not modular, as all
parts are composed before typechecking. This last problem
can cause compilation errors if two programmers implement
a partial class in incompatible ways, so it is unclear what
should be the appropriate level of granularity when partial
classes are used in a team environment.

10. Conclusions
We have presented a language that solves two major prob-
lems caused by inheritance diamonds: object initialization
and modular typechecking of multiple dispatch. We have
also shown how programs written with traditional multiple
inheritance can be converted to programs in our language.
We note that though diamonds can still cause encapsula-
tion problems (depending on the definition of encapsula-

tion), this problem can be ameliorated by preferring requires
over extends.

We emphasize that although programmers may indeed
have to decide ahead of time whether they want to make
a class re-usable by making it abstract and by using re-
quires instead of extends—potentially a difficult decision to
make—it is a decision the class designer must already make,
as a class must be designed carefully if it is to be a unit of
reuse (e.g., see item 17 in [33]).

One might also raise the objection that CZ would result in
a proliferation of abstract classes, for which a corresponding
concrete class would have to be defined. We believe that this
problem can mostly be solved through a syntactic sugar for
defining concrete classes (Section 6.4). Additionally, note
that our proposed solution requires just as many abstract
classes as there would be mixins or traits (which also can-
not be instantiated) if those solutions were to be used (Sec-
tion 3.2).
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A. Subtyping vs. Subclassing
In CZ, the use of requires provides subtyping without inheri-
tance, but it also places constraints on concrete subclasses—
they must inherit from their parent’s required classes. This
raises the question of whether simply providing subtyping
without inheritance would be sufficient to encode the desired
relationships.

When separating subtyping from inheritance, we may
use nominal subtyping or structural subtyping. However,
in either case, private members are problematic. If private
members are included in a subtyping relationship, this can
violate information hiding, if they are not, it can restrict
expressiveness.

Concretely, consider the following program:

class A {
private int i;
boolean equals(A other) {

... // can access other.i?
}

}

class B subtypes A {
... // declare i?

}

Suppose that the subtypes keyword provides nominal sub-
typing without inheritance (but without the additional con-
straints of requires). The question then arises: are private
members considered when checking subtyping? If so, then B
must declare a private field i. Unfortunately, this also means
that A.equals can access B.i, which violates information hid-
ing; one class should not be able to access private members
defined in another class. On the other hand, if we assume that
subtyping does not include private members, then A.equals
cannot access other.i, which is problematic if the definition
of equality depends on this field. An analogous problem oc-
curs if structural subtyping is used.

The problem can be avoided if inheritance or requires is
used for types that contain binary methods. Since requires
is tied to a particular class, if we change the above code to
B requires A (or B extends A), then A.equals(A other) may
safely access other.i, even if an object of type B is passed to
this method. Note that an information hiding problem does
not arise here—the private state has not been redefined in B,
but is rather (eventually) inherited from A in the concrete B
implementation that was passed in.
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